

7.1.6 Quality audits on environment and energy are regularly undertaken by the Institution and any awards received for such green campus initiatives:

- 1. Green audit
- 2. Energy audit
- 3. Environment audit
- 4. Clean and green campus recognitions / awards
- 5. Beyond the campus environmental promotion activities

GREEN AUDIT

National Rural Institutions Sustainability Grading (NRISG)

2022-23

TKR COLLEGE OF ENGINEERING AND TECHNOLOGY (AUTONOMOUS) (Sponsored by TKR Educational Society, Approved by AICTE, Affiliated by JNTUH, Accredited by NBA & NAAC with 'A' Grade)

NATIONAL RURAL SUSTAINABILITY GRADING 2022-23

A green campus is no longer a fad, but a clear mandate in India and several other progressive nations where environmental awareness is growing by the day. As per the University Grants Commission's notification: "A green campus is a higher education community with optimum land use, environmental planning and resource management i.e., improving energy efficiency, conserving resources, enhancing environmental quality including habitat preservation, healthy living environment, use of renewable energy and management of wastes and water recycling. The buildings within the campus should be based on green building concepts to the extent possible."

The concerted efforts of TKR College of Engineering & Technology in the direction of fostering "sustainability and swachtha" in the campus has made it possible to find a place in the most coveted MGNCRE initiated National Rural Institutions Sustainability Grading (NRISG)2022-23. The college is awarded a grading of A+ for Green Cover on Campus and surface water harvesting. Rooftop water harvesting, rooftop solar system and waste management with "B" grade.

Having been graded, there is more responsibility on our institution to transform ourselves into a sustainable institution where all its stakeholders continue to play a vital role in maintaining A+ grade even at a future date.

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

TKR COLLEGE OF ENGINEERING AND TECHNOLOGY C D E F G H

1		· · · · · · · · · · · · · · · · · · ·	National	Rural Institutions	Sustainabi	lity Gradin	g(NRISG) 2	022-23	
2	SL.No	State	District Name	HEI Name	Green Cover on Campus	Surface Water	Rooftop Water	Rooftop	Waste Management
3	1	Assam	Cachar	Assam University Silchar	A+	A+	A	A+	A+
4	2	Assam	Cachar	Cachar College Silchar	A+	A	B	c	A
5	3	Assam	Cachar	Gurucharan College	A+	В	C+	c	A
6	4	Assam	Cachar	N.C Paul Memorial College	A+	C+	c	c	C+
7	5	Assam	Cachar	Radhamadhab College Silchar	A+	в	C+	с	c
8		Assam	Cachar	Ramanuj Gupta Degree college	A+	A	A	A+	A
9	7	Assam	Cachar	Silchar College	A+	с	B+	c	B+
LO		Assam	Cachar	Silchar College of Education	A	в	в	в	c
11	9	Assam	Cachar	Teacher Training College	A+	B+	В	c	C+
12	10	Assam	Cachar	Women's college Silchar	A+	A	A	C+	C+
3	11	Assam	Kamrup Metropolita		8+	B+	A+	C+	B+
4		Assam	Kamrup Metropolita		A÷	A+	A+	C+	B+
5	13	Assam	Kamrup Metropolita	B Borooah College	C+	B+	8+	C+	A+
6	14	Assam	Kamrup Metropolita		А	с	В	C+	
7	15	Assam	Kamrup Metropolita	Gauhati Commerce College	A+	A+	B+	B+	A+
8	16	Assam	Kamrup Metropolita	Handique Girls' College	B+	с	C+	C+	c

1	A	B	£ C	D					
		D	C	and the second	E	F	G	Н	I. State
177	1175	Telangana	Rangareddi	Annamacharya institute of Tech&science,	-				
	1115	Tetangana	Kangareuur	Rangareedi District and	B+	B+	B+	C+	C+
178	1176	Telangana	Rangareddi	Aristotle College of management Rangareedi District and Telangana	A+				
223			Hungereden	Govt Degree college	AT	A	c	С	B+
179	1177	Telangana	Rangareddi	Maheshwaram Rangareedi District and	A+	c	с		
				Govt Polytechnic for	AT	L.	د د	С	С
180	1178	Telangana	Rangareddi	Women Rangareedi District and Telangana	A+	B+			
385			linguicadi	K G Reddy College of	AT	8+	B+	C+	8
81	1179	Telangana	Rangareddi	Engg, Rangareddi District and Telangana	A+	A+			
1351		Q	1	Maturi Venkata Subba	A1	AT	A+	C+	A+
82	1180	Telangana	Rangareddi	Rao Engg college, Rangareedi	A+	А	A+	A+	
24				Sri Indu college of Engg	- H.		AT	AT	Α
83	1181	Telangana	Rangareddi	and Tech Rangareedi District and Telangana	A+	B+	-		
					AT	BŦ	с	8+	C+
84	1182	Telangana	Rangareddi	St.Ann's P.G college for women Rangareedi District and Telangana	A+	Α	A+		
28		0		TKR College Rangareedi	AT	A	A+	с	B+
35	1183	Telangana	Rangareddi	District and Telangana	A+	A+	C+	в	в
36	1104	Telangana	Deserveddi	Vidya Jyothi institute of Technology Rangareedi					
	1104	relatigatia	Rangareddi	District and Telangana	A+	B+	A	B+	A+
37	1185	Telangana	WARANGAL	ASM Degree College for Women's, Warangal	A+	A+	A+	A+	A+

The first picture shows the attributes of NRISG(22-23) and TKR College of Engineering and Technology is highlighted in second picture.

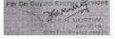
Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

TKR COLLEGE OF ENGINEERING AND TECHNOLOGY (AUTONOMOUS)

(Sponsored by TKR Educational Society , Approved by AICTE, Affiliated by INTUH, Accredited by NBA & NAAC with 'A' Grade)

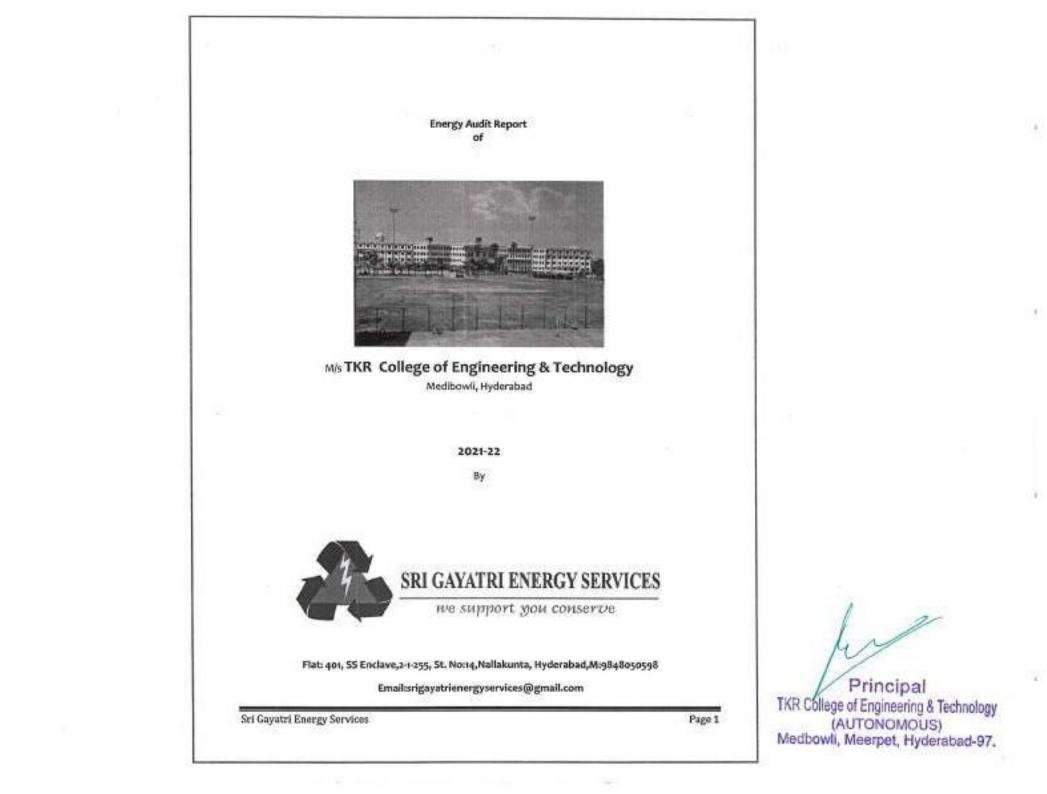
ENERGY AUDIT

SRI GAYATRI ENERGY SERVICES


we support you conserve

Flat: 401, SS Enclave,2-1-255, St. No:14,Nallakunta, Hyderabad,M:9848050598 Email:srigayatrienergyservices@gmail.com

CERTIFICATE


We here by certify that we carried out Energy Audit in the M/s **TKR College of Engineering & Technology** Hyderabad, Telangana during **27 November 2021** and following Observations were presented below. The Energy Bills were analyzed for energy consumption ,Power factor , Electrical Load distribution , Distribution Losses if any and Recommendation to reduce the same. We appreciate the efforts of the M/s **TKR College of Engineering & Technology**, Medibowli, Hyderabad ,Telangana for their Pro-Energy Conservation measures in this regard.

For M/s Sri Gayatri Energy Services

Principal KR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

CONTRACT COURSES AND A	
ACKNOWLEDGEMENT	
Disclaimer	
Audit Study team	5
LIST OF INSTRUMENTS USED	
CERTIFICATE	
Executive Summary of Observations	
Detailed Walk Through Energy Audit scope of work	
Introduction of the Institution	
Facility Description	
Electrical Load Distribution	
IVAC- Air Conditioning Systems	
Introduction of Air Conditioning & Refrigeration System	
Maintenance & Electrical Safety	
Annexure I	
Annexure -II -Abbreviations &Definitions	
Annexure :3 HVAC	
Annexure - 4 Lighting	

Sri Gayatri Energy Services

Page 2

ACKNOWLEDGEMENT

M/s Sri Gayatri Energy Services, Hyderabad places on record its sincere thanks to progressive management of M/s TKR College of Engineering & Technology, Medibowii, Hyderabad, Telangana for entrusting the Energy Audit work of their College.

The study team is appreciative of the keen interest and encouragement shown by

1. Dr Shri T. Harinath Reddy - Secretary

2. Shri T. Amarnath Reddy - Treasurer

3. Dr. Shri D.V. Ravi Shankar - Principal

4. Dr. Shri K. Raju - Coordinator

....

Sri Gayatri Energy Services

Au

Page 3

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

1.1

Disclaimer

Warranties and Liability

While every effort is made to ensure that the content of this report is accurate, the details provided "as is" make no representations or warranties in relation to the accuracy or completeness of the information found on it. While the content of this report is provided in good faith, we do warrant that the information will be kept up to date, be true and not misleading, or that this report will always (or ever) be available for use.

While implementing the recommendations site inspection should be done to constitute professional approach and adequacy of the site to be established without ambiguity and we exclude all representations and warranties relating to the content and use of this report.

In no event We will be liable for any incidental, indirect, consequential or special damages of any kind, or any damages whatsoever, including, without limitation, those resulting from loss of profit, loss of contracts, goodwill, data, information, income, anticipated savings or business relationships, whether or not advised of the possibility of such damage, arising out of or in connection with the use of this report..

This is a walk through Audit conducted on request of M/s TKR College of Engineering & Technology.

Exceptions

Nothing in this disclaimer notice excludes or limits any warranty implied by law for death, fraud, personal injury through negligence, or anything else which it would not be lawful for to exclude.

We trust the data provided by the M/s TKR College of Engineering & Technology (Autonomous) Medibowli , Hyderabad, Telangana personnel is true to their best of knowledge and a preliminary Report was generated ,we didn't verify the correctness of it.

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Audit Study team
Shri D.S.R.Murthy

Senior Energy Auditor

Shri Durga Rao

Engineer

Shri Sai Ganesh

Engineer

LIST OF INSTRUMENTS USED

True RM5 Power Meter

Digital Earth Resistance meter (Clamp Type)

Digital Earth Resistance Meter (Conventional Type , Kyoritsu, Japan)

Digital Infrared Thermometer (Fluke)

Sri Gayatri Energy Services

Page 5

CERTIFICATE

We here by certify that we carried out Energy Audit in the M/s TKR College of Engineering & Technology Hyderabad, Telangana during a December 2022 and following Observations were presented below. The Energy Bills were analyzed for energy consumption ,Power factor , Electrical Load distribution , Distribution Losses if any and Recommendation to reduce the same. We appreciate the efforts of the M/s TKR College of Engineering & Technology, Medibowil, Hyderabad ,Telangana for their Pro-Energy Conservation measures in this regard.

For M/s Sri Gayatri Energy Services

Sri Gayatri Energy Services

Page 6

Executive Summary of Observations

- 1. A Detailed Walk Through Energy Audit is carried out at the Campus with following observations.
- 2. The Power Factor at the Main Incoming panel (after Transformer) is satisfactory .
- It is observed that the Demand is exceeding the CMD in couple of months and it is recommended to enhance the CMD to avoid the penalties.
- It is observed that the Existing Fans installed are Energy Inefficient fans which may be replaced as and when opportunity comes with Energy Efficient one which result in energy savings (Detailed Calculation is enclosed).
- The Loading of the UPS is observed to be moderate, where ever they are found to be low , it is recommended to check for the opportunity to shift the load to the other UPS and switch off the lowly loaded UPS to reduce the losses.
- .6. It is observed that some of the Split AC's installed are not of star rated, it is recommended to replace them with minimum 3 star rated AC's as and when the opportunity comes
- 7. It is recommended to replace the existing inefficient light fittings with efficient Light fittings.

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Detailed Walk Through Energy Aus	lit. scope of work	700
Conservation measures/ Renewah	s with reference to Energy Efficient equipmer le Energy. ortunities within the premises by installing eff	
/unevices / system of the electrical i	nstallation. artunities by adopting continuous suitable m	VV2230-11023DF192523F6
Project Schedule :		
1. Walk Through Audit	: i day	
2. Report generation	: 2-3 Days	
Sri Gayatri Energy Services		Page 8

Principal KR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97. 1

Introduction of the Institution

TKR College of Engineering and Technology – a modern temple of learning, an off shoot of the TKR Educational Society was established in the year 2002 in a sprawling, lush green 20 acre campus at Meerpet, Hyderabad. The college provides a serene and tranquil environment to the students, boosting their mental potential and preparing them in all aspects to face the cut- throat global competition with a smile on the face and emerge victorious.

Sri Teegala Krishna Reddy, the Mayor of Hyderabad, is the founder chainman of TKR Educational Society. A Philanthropist by nature, "the friend of man, to vice alone of foe", and an urge to see our students excelling themselves in all fields prompted him to start the educational society; making it easy for education to be within arm's length of even a rural student and providing them with an independent and easy in the for pursuing their dreams and making them come true and in the process upholding moral and ethical values.

Facility Description

The Facility Receives Power supply from TSSPDCL at 11 KV, the installed transformer is 11 KV/433 V transformer of 400 KVA and the Contracted Maximum Demand with TSSPDCL is 350 KVA, The total connected Load is around 851 KW. Hence it is recommended to reduce the same.

Sri Gayatri Energy Services

Page 9

Principal TKR Coffege of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

1

Sri Gayatri Energy Services Page 10

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Υ.

Electrical Load Distribution

The Incoming power supply is from a 11 KV TSSPDCL, with one Transformers of rating 11kV/433 V 400 KVA, The total connected load is around 851 KW. The emergency supply, taken care by DG Sets. All the three Blocks are equipped with UPS supply for Power back up for the computer systems. The details of the connected Load across the campus is given below

	Total Connected Load , kW												
		Lighting			Fans		-	Split AC	\$		Compute	15	Total Connected Load, KW
Location	Qty	Rating(W)	Load,kW	Qty	Rating(W)	Load,kW	Qty	Rating(W)	Load,kW	Qty	Rating(W)	Load,kW	1
G Floor	300	36	10.8	150	80	20	20	1.175	23.5	60	250	15.00	69.10
1 st Floor	405	36	14.58	350	80	. 28	40	1.175	47	98	285	27.93	112.51
and Floor	800.	36	28.8	700	80	56	20	1.575	23.5	390.	345	126.75	-135.05
3rd Floor	850	36	30.6	650	80	51	10	1.175	11.75	548	350	191.80	285.15
4th Floor	Sop	36	28.8	680	80	54.4	10	1.175	11.75	54	300	16.20	111,13
T Block	95	36	3.42	45	80	3.6	8	1.175	9.4	55	265	14.575	31.00
								ALC: NO.	1 Sauthan		DO TRONG	2.5181	83,0,16

Sri Gayatri Energy Services

Medbowli, Meerpet, Hyderabad-97.

TKR College of Engineering & Technology (AUTONOMOUS)

Principal

The Power Measurements are carried out

	Powerl	Measurem	ents AY 20	0.0	CITES IN	1.10
Location	Phase	Voltage	Ampere	kVA	Power factor	kW
Main Incoming Power Supply	R	237.8	454	103.2	0.98	105.4
	Y	238.5	463	106.9	0.995	107.53
	В	241.8	471	108.3	0.96	112.9

Sri Gayatri Energy Services

Page 12

1

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowii, Meerpet, Hyderabad-97.

.

TKI	R Colle	ege of	Engine	ering a	2021		logy ,	Medib	owli, ł	lyder	abad
	12-	1.1	1	80.00	CHAR	GES					
Month	KWH	KVAH	PF	Actual KVA	Billed KVA	TODI	TOD2	Demand	Energy	TOD	Total
NOV22	92935	94215	0.98641	309	309	16857	13447	147050	829092	30304	1012108
OCT22	73597	74488	0.98804	303	303	12577	10344	144210	655494	22921	827094
SEP22	97398	98517	0.98864	328	328	16343	14081	156085	866949	30424	1059369
AUG22	88743	90025	0.98576	356	356	15277	12702	166250	792220	27979	998120
JULY22	75871	76876	0.98693	327	327	12166	11128	155325	676508	23294	859740
JUN22	124870	127665	0.97811	469	469	17265	16542	166250	1291969	38878	1617997
MAY22	117358	120280	0.97571	467	467	16559	15312	13060	938184	31871	1519291
APR22	107633	109867	0.97967	424	424	16053	15179	165360	856962	31232	1233335
MAR22	88544	90250	0.9811	349	349	15596	12824	136344	703950	28420	874129
FEB22	60598	62465	0.97011	280	280	11267	8772	109200	487227	20039	620213
JAN22	58672	60325	0.9726	280	280	11410	8979	109200	470535	20389	603743
DEC21	89868	92296	0.97369	293	293	16508	13099	11420	719908	29607	869323

The Energy Bills Analysis is carried out to Understanding the Consumption pattern of the Institute

Saving Opportunities

1. The Actual Demand is observed to be recorded more than the CMD, it is recommended to enhance the CMD to 450 kVA to avoid paying penalty of Rs 3,0020/- every month. 2. The individual Floor Wise Power Factor to be improved to reduce the losses .

Sri Gayatri Energy Services

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

HVAC- Air Conditioning Systems Sri Gayatri Energy Services Page 14

Introduction of Air Conditioning & Refrigeration System:

The present Air conditioning system in the college is of Package Units, Split Air Conditioning units of star rated. The Air conditioning is analyzed for energy saving opportunities. The detailed measurements are taken on sample basis at some of the locations.

The Measurements of sample Split AC units are done in blocks and tabulated below

_	Sp	lit	Ai	r C	one	ditio	ners	; 2	021	-22		_
SI. N	Location	No. of A.C Uni t	Type of A.C.	Rate d TR	Pow er kw	Inlet Temp.(* c)	Outlet Temp.(° c)	Flow m/s ec	Arrive d TR	Specif ic Powe r KW/T R	CO P	EER
1	Ground Floor	1	Split AC	1.5	1.15 2	23.7	20.5	0.38	1.53	0.75	4.6	15.9
2	First Floor	1	Split AC	1.5	1.22	24.2	22.3	0.75	1.79	0.68	5.1	17.5
3	Second Floor	1	Split AC	1.5	1.25	25.1	23.1	0.45	1.13	1.10	3.1	10.8
4	Third Roor	1	Split AC	1.5	1.32	23.2	22.3	0.83	0.94	1,41	2.5	8.54
5	Fourth Floor	1	Split AC	1.5	1.48	24.3	22.8	0.63	1.19	1.25	2.8	9.63
6	Computer Lab	1	Split AC	1.5	1.25	24.5	23.5	0.83	1.04	1.20	2.9	10.0
7	T Block	1	Split AC	1.5	1.25	25.3	24.6	0.83	0.73	1.71	2.0	7.01

Energy Efficiency Opportunities

Reduce heat loads

Any reduction in heat loads results in a reduction in required refrigeration capacity and therefore energy consumption. There

are three main methods for reducing heat loads:

- Improving insulation.

- Reducing air leakage.

-Reducing incidental and auxiliary gains.

Sri Gayatri Energy Services

TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Page 15

Principal

Insulation improvements

The walls of a refrigerated space should be well maintained to guard against damage or degradation of the insulating material.

visual inspection will give first indications of problems while thermographic inspection will show up cold areas where insulation is poor.

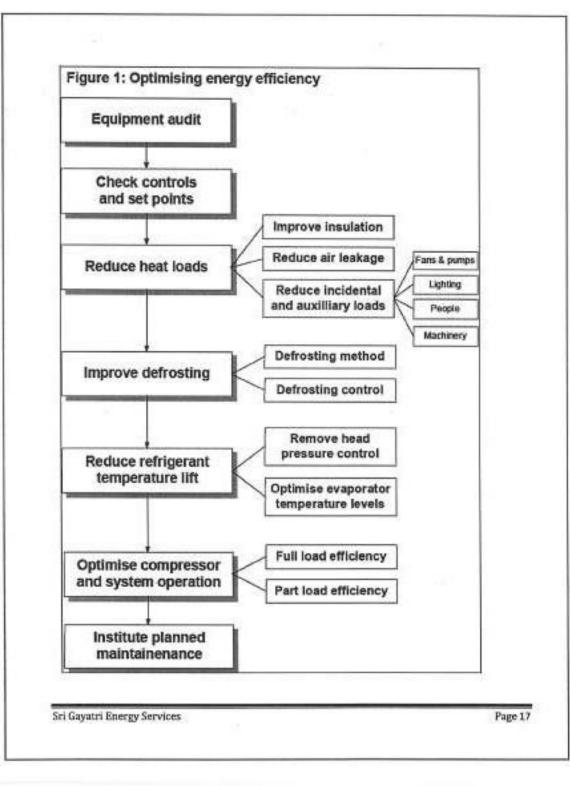
- Air leakage

Air can leak through the degraded fabric of an enclosure or through an access such as a door. Taking the steps outlined above should prevent fabric leakage, while reducing air leakage through doors is outlined below:

Reduce temperature lifts

The efficiency of refrigerating plant is dependent upon the size of the temperature lift between the evaporator and the condenser: the smaller the lift the more efficient the system.

Head pressure control


Many systems maintain a higher lift than is necessary through the use of head pressure control. This practice aims to maintain ahigh pressure in the condenser to ensure a controlled supply of refrigerant to the evaporator. The control pressure can be reduced using a balanced port thermostatic expansion valve or an electronic expansion valve, while the installation of a liquid line pump can further reduce the need for such control. Lowering the control pressure allows the condensing pressure to fall as the outside temperature falls

from the design condition and can improve energy efficiency by50%, particularly during winter. The cost of these measures varies between 15,000 to 150000 if installed at the time of refrigerant replacement and will normally pay back in about two years.

The Package Units measurements are carried out on sample basis at various locations and following are the details tabulated calculating the SPC (Specific Power Consumption), EER(Energy Efficiency Ratio), COP(Coefficient of Performance).

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Maintenance & Electrical Safety Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97. Sri Gayatri Energy Services Page 18

10

]
1.	Electrical Single Line Diagram / Lay Out Diagram / Equipment Layout / Electrical Control	
	diagram	
	 Check for Unauthorized Temporary Installations Modification to be Updated 	
	iii. SLD reflects the actual installation	
	iv. Duly approved by statutory authorities	
а.	Importance of Electrical Safety in the Overall Safety System	0
	Periodicity of comprehensive Electrical Safety check	
	i. Understanding of electrical hazards	
	ii. Electrical checkpoints in the safety checklist	
	III. Implementation priority for electrical hazards	
	Iv. Electrical Work Permit System	
	v. Safe Electrical Operating Procedures	
3	Electrical Preventive Maintenance	
	i. Is there an Electrical Preventive Maintenance programme in place	
	II. Is the programme implemented? What is the slippage?	
	iii. Are the relevant standards (statutes and non-statutory) referred and	1
	incorporated in the EPM programme?	
	iv. Electrical Tests, Records, Test Procedure and periodicity (earth resistance,	
	insulation resistance tests) v. Is the EPM programme only documented?	
	 v. Is the EPM programme only documented? vi. Transformer tests (dielectric strength, acidity, sludge deposits, dissolved gases, 	-
	etc.) and periodicity	
	vil. Periodic calibration of meters (ammeter, voltmeter, relays, temperature	
	gauges) and test instruments (insulation resistance megger, earth resistance megger, multi-meters, etc.)	
4	Earthing System	
10000	i. Installation as per approved design?	
	ii. Installation and Maintenance as per IS 3043?	
	IE. Earth resistance measured periodically?	
	lv, Test procedure	
	 Acceptable earth resistance values 	
	vi. Is the earthing system modified when electrical installation is modified?	1
	vii. Are neutral earth pits independent and separate?	1
	vii. Are earth pits identified? ix. Are two and distinct earth connections provided?	
	 Are two and distinct earth connections provided? Is the earth continuity tested? 	IN/
	xi. Is bonding and earthing carried out to avoid ESD hazards?	
	the second and second our to deale contractions	
		Principal
100		TKR College of Engineering & Techno
Sri Gaw	tri Energy Services Page 19	
our only	tri Energy Services Page 19	(AUTONOMOUS) Medbowli, Meerpet, Hyderabad-

Annexure I

Conversion factors

CONVERSION TABLES

1 Kcal	3.9685 Btu
i KWh	3413 Btu
1 KWh	860 kcal
1 Btu	1.055 kJ
1 calorie	4.186 joules
t hp	746 Watts
rkg	2.2 lb (pounds)
i meters	3.28 feet
1 inch	2.54 cm
t kg/cm²	14.22 psi
1 atmosphere	1.0332 kg/cm²
t kg/cm ^z	10 meters of water column @ 4 °C
i kg/cm²	9.807 × 10.4 passels
1 Ton of Refrigeration	3023 kcal/hour
Ton of Refrigeration	12000 Btu/hour
US Gallon	3.785 liters
t imperial Gallon	4.546 liters
r.	5.8×*C+32
k	°C+273

Sri Gayatri Energy Services

Page 20

Annexure II Abbreviations & Definitions Abbreviations

°C	degrees Celsius
Ŧ	degroes Fahrenheit
Btu	British thermal unit
Btu//tz	British thermal units per square foot
1/m²	Joules per square meter
kVA.	kilovolt-amperes
kW	kilowatts
kWh	kilowatt-hours
kWh/m ²	kilowatt-hours per square meter

Definitions:

Basic definitions of terms

Absorber. The component of the vapour absorption chilling package wherein the refrigerant vapour is absorbed by the liquid absorbent.

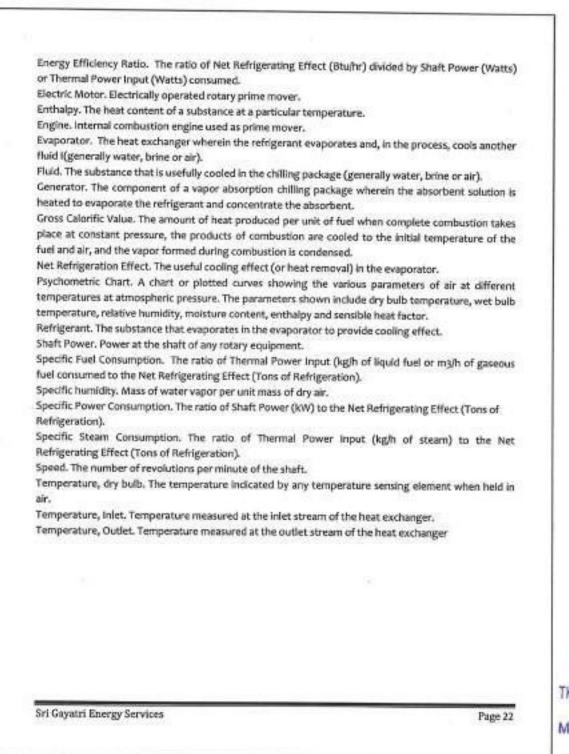
Air Handling Unit. An air cooling unit, consisting of a blower or blowers, heat exchanger and filters with refrigerant, chilled water or brine on the tube side to perform one or more of the functions of circulating, cooling, cleaning, humidifying, dehumidifying and mixing of air.

Brine. Solution of anti-freeze substances like Sodium Chloride, Calcium Chloride, Mono-ethylene Glycol, Ethyl Alcohol etc.

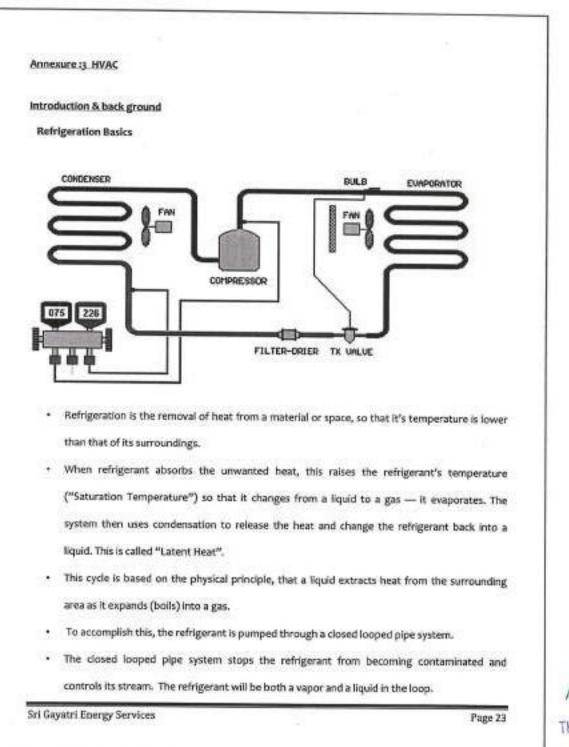
Coefficient of Performance. The ratio of Net Refrigerating Effect divided by Compressor Shaft Power or Thermal Power Input. The numerator and denominator should be in the same measuring units.

Compressors. Machines in which compression of refrigerant vapour is effected by the positive action of linear motion of pistons, rotating elements (screws, vanes, scrolls etc.) or conversion of velocity energy to pressure in a centrifugal device.

Compressor, hermetic. Sealed compressor & motor unit, where the electric motor is cooled by the refrigerant and both the compressor and electric motor are not accessible for maintenance.


Compressor, open. Compressor is externally coupled to the prime mover and the refrigerant does not cool the prime mover.

Compressor, semi-hermetic. Compressor motor unit, where the electric motor is cooled by the refrigerant and the compressor is accessible for maintenance.


Condenser. The heat exchanger, which utilizes refrigerant to water/air heat transfer, causing the refrigerant to condense and the water/air to be heated. De-superheating or sub-cooling of the refrigerant may also occur.

Sri Gayatri Energy Services

Page 21

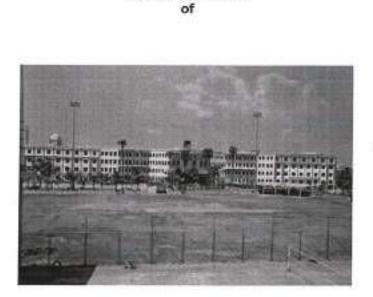
Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Annexure - 4 Lighting

	Range of	A	Bemarks		
Type of Interior Activity	Service Illuminanac e in Lux	Quality Class of Direct Glare Limitation			
Educ	ation	a contra			
Assembly Halls	200-300-500	3			
Teaching Spaces	200-300-500	1			
Lecture Theatres					
i) General	200-300-500	1			
ii) Demo Benches	300-500- 700	1	Localized Lighting may be appropriate		
ili) Seminar Rooms	300-500-750	1			
iv) Art Rooms	300-500-750	1			
v) laboratories	300-500-750	1			
vi) Libraries	200-300-500	1			
vii)Music Rooms	200-300-500	1			
viii) Sports Hall	200-300-500	1			
ix) Work Shop	200-300-500	1			
x)Computer Work station	300-500-750	1			
xi)Bath Rooms	50-100-150		Supplementary local lighting near mirror		
xii) Office Rooms	300-500-750	1	1280.0000000		
xiii) Entrance Halls, Lobbies	150-200-300	2			
xiv) Corridors, Passageway, Stairs	50-100-150	2			

Sri Gayatri Energy Services

Page 24


Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Light Source Comparison					
Attributes	Incandescent	CFL.	LED		
Colur Rendering Index	100	Greater than 80	40-80		
Watts/ Lamp	100	23	10.00		
Lumen/Lamp	1600	1600	30		
Lumen/Watt	16	60-80	20-30		
Life (Hrs)	750	8000	50,000		

1500 K	Colour Rendering Index Candlelight	
2680 K	40 Wincandescent lamp	
3000 K	200 Wincandescent lamp	-
3200 K	Sunrise/sunset	
3400 K	Tungsten lamp	-
3400 K	1 hour from dusk/dawn	
5000-4500 K	Xenon lamp/light arc	_
5500 K	Sunny daylight around noon	
5500-5600 K	Dectronic photo flash	_
6500-7500 K	Overcast sky	_
9000-12000 K	Blue sky	

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Energy Audit Report

M/s TKR College of Engineering & Technology Medibowli, Hyderabad

2020-21

By

SRI GAYATRI ENERGY SERVICES

we support you conserve

Flat: 401, SS Enclave, 2-1-255, St. No:14, Nallakunta, Hyderabad, M:9848050598

Email:srigayatrienergyservices@gmail.com

Sri Gayatri Energy Services

Page 1

Contents
ACKNOWLEDGEMENT
Disclaimer
Audit Study team
LIST OF INSTRUMENTS USED
CERTIFICATE
Executive Summary of Observations
Detailed Walk Through Energy Audit scope of work
Introduction of the Institution
Facility Description
Electrical Load Distribution
HVAC- Air Conditioning Systems
Introduction of Air Conditioning & Refrigeration System
Maintenance & Electrical Safety
Annexure I
Annexure -II -Abbreviations & Definitions
Annexure :3 HVAC
Annexure - 4 Lighting

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

ACKNOWLEDGEMENT

M/s Sri Gayatri Energy Services, Hyderabad places on record its sincere thanks to progressive management of M/s TKR College of Engineering & Technology, Medibowli, Hyderabad, Telangana for entrusting the Energy Audit work of their College.

The study team is appreciative of the keen interest and encouragement shown by

1. Dr Shri T. Harinath Reddy - Secretary

Shri T. Amarnath Reddy – Treasurer

3. Dr. Shri D.V. Ravi Shankar - Principal

4. Dr. Shri K. Raju - Coordinator

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Disclaimer

Warranties and Liability

While every effort is made to ensure that the content of this report is accurate, the details provided "as is" make no representations or warranties in relation to the accuracy or completeness of the information found on it. While the content of this report is provided in good faith, we do warrant that the information will be kept up to date, be true and not misleading, or that this report will always (or ever) be available for use.

While implementing the recommendations site inspection should be done to constitute professional approach and adequacy of the site to be established without ambiguity and we exclude all representations and warranties relating to the content and use of this report.

In no event We will be liable for any incidental, indirect, consequential or special damages of any kind, or any damages whatsoever, including, without limitation, those resulting from loss of profit, loss of contracts, goodwill, data, information, income, anticipated savings or business relationships, whether or not advised of the possibility of such damage, arising out of or in connection with the use of this report..

This is a walk through Audit conducted on request of M/s TKR College of Engineering & Technology.

Exceptions

Nothing in this disclaimer notice excludes or limits any warranty implied by law for death, fraud, personal injury through negligence, or anything else which it would not be lawful for to exclude.

We trust the data provided by the M/s TKR College of Engineering & Technology (Autonomous) Medibowli, Hyderabad, Telangana personnel is true to their best of knowledge and a preliminary Report was generated, we didn't verify the correctness of it.

Pfincipal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Audit Study team Shri D.S.R.Murthy

Senior Energy Auditor

Shri Durga Rao

Shri Sai Ganesh

Engineer

Engineer

LIST OF INSTRUMENTS USED

True RMS Power Meter

Digital Earth Resistance meter (Clamp Type)

- Digital Earth Resistance Meter (Conventional Type, Kyoritsu, Japan)
- Digital Infrared Thermometer (Fluke)

TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

CERTIFICATE

We here by certify that we carried out Energy Audit in the M/s TKR College of Engineering & Technology Hyderabad, Telangana during 27 November 2021 and following Observations were presented below. The Energy Bills were analyzed for energy consumption ,Power factor , Electrical Load distribution , Distribution Losses if any and Recommendation to reduce the same. We appreciate the efforts of the M/s TKR College of Engineering & Technology, Medibowil, Hyderabad ,Telangana for their Pro-Energy Conservation measures in this regard.

For M/s Sri Gayatri Energy Services

1

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Executive Summary of Observations

- 1. A Detailed Walk Through Energy Audit is carried out at the Campus with following observations.
- 2. The Power Factor at the Main Incoming panel (after Transformer) is satisfactory .
- It is observed that the Demand is exceeding the CMD in couple of months and it is recommended to enhance the CMD to avoid the penalties.
- It is observed that the Existing Fans installed are Energy Inefficient fans which may be replaced as and when opportunity comes with Energy Efficient one which result in energy savings (Detailed Calculation is enclosed).
- The Loading of the UPS is observed to be moderate, where ever they are found to be low, It is recommended to check for the opportunity to shift the load to the other UPS and switch off the lowly loaded UPS to reduce the losses.
- It is observed that some of the Split AC's installed are not of star rated, it is recommended to replace them with minimum 3 star rated AC's as and when the opportunity comes
- 7. It is recommended to replace the existing inefficient light fittings with efficient Light fittings.

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Detailed Walk Through Energy Audit scope of work

- Physical Inspection of the premises with reference to Energy Efficient equipment/ Energy Conservation measures/ Renewable Energy.
- Identifying the Energy saving Opportunities within the premises by installing efficient equipment /devices / system of the electrical installation.
- 3. Identifying the Energy Saving opportunities by adopting continuous suitable monitoring methods

:1 day

Project Schedule :

Walk Through Audit

2. Report generation : 2-3 Days

TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Introduction of the Institution

TKR College of Engineering and Technology – a modern temple of learning, an off shoot of the TKR Educational Society was established in the year 2002 in a sprawling, lush green 20 acre campus at Meerpet, Hyderabad. The college provides a serene and tranquil environment to the students, boosting their mental potential and preparing them in all aspects to face the cut- throat global competition with a smile on the face and emerge victorious.

Sri Teegala Krishna Reddy, the Mayor of Hyderabad, is the founder chairman of TKR Educational Society. A Philanthropist by nature, "the friend of man, to vice alone of foe", and an urge to see our students excelling themselves in all fields prompted him to start the educational society; making it easy for education to be within arm's length of even a rural student and providing them with an independent and easy in the for pursuing their dreams and making them come true and in the process upholding moral and ethical values.

Facility Description

The Facility Receives Power supply from TSSPDCL at 11 KV, the installed transformer is 11 KV/433 V transformer of 400 KVA and the Contracted Maximum Demand with TSSPDCL is 350 KVA, The total connected Load is around 810 KW.

Hence it is recommended to reduce the same.

cincipal

TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Meabowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Electrical Load Distribution

The Incoming power supply is from a 11 KV TSSPDCL ,with one Transformers of rating 11kV/433 V 400 KVA, The total connected load is around 810.39 KW. The emergency supply, taken care by DG Sets. All the three Blocks are equipped with UPS supply for Power back up for the computer systems. The details of the connected Load across the campus is given below

10007-14				1	Tota	Connec	ted	Load , kW	/			MILL I	2 12
		Lighting			Fans		The lot	Split AC	5		Compute	rs	Total Connected Load , kW
Location	Qty	Rating(W)	Load,kW	Qty	Rating(W)	Load,kW	Qty	Rating(W)	Load,kW	Qty	Rating(W)	Load,kW	
G Floor	275	36	9.9	225	80	18	18	1.175	21.15	60	250	15.00	64.05
1 st Floor	396	36	14.256	342	80	27.36	35	1.175	41.125	98	285	27.93	110.6/
2nd Floor	790	36	28.44	690	80	55.2	17	1.175	19.975	375	325	121.88	and the second se
3rd Floor	825	36	29.7	625	80	50	7	1.175	8.225	535	350	187.25	225,49
4th Floor	775	36	27.9	665	80	53.2	6	1.175	7.05	54	300	16.20	275-18
T Block	90	36	3.24	43	80	3.44	8	1.175	9.4	55	265	14-575	10.4.35 30.66
		<u> </u>	5	124									. 810.39

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

The Power Measurements are carried out

	Power Ma	easureme	nts AY 20	21	- 10-12-3	
Location	Phase	Voltage	Ampere	kVA	Power factor	kW
Main Incoming Power Supply	R	237.8	437.69	99.96	0.98	102
201210100	Y	238.5	423.65	93.12	0.96	97
	B	241.8	480.27	100.44	0.93	108

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

1100		1	I IT IT	UNITS	CHARGES						
Month	KWH	куан	PF	Actual KVA	Billed KVA	TOD1	TOD2	Demand	Energy	TOD	Total
NOV21	81842	84397	0.9697	303	303	14389	11584	118326	658296	25973	807659
OCT21	80322	82509	0.9735	322	322	16354	11970	125736	643570	28324	802580
SEP21	72544	74512	0.9736	384	384	8412	9710	136500	581193	18122	766962
AUG21	83889	85873	0.9769	292	292	13826	12072	114036	669809	25898	814895
JULY21	62942	64254	0.9796	292	292	9824	8142	114192	501204	17966	637218
JUN21	23539	24264	0.9701	280	280	4190	3645	109200	189259	7835	302585
MAY21	34604	35588	0.9724	280	280	5018	4554	109200	277586	9572	391513
APR21	52356	53516	0.9783	280	280	6806	6546	109200	417424	13352	470667
MAR21	82300	84054	0.9791	302	302	12560	12280	117780	655621	24840	788755
FEB21	59330	61032	0.9721	280	280	9972	8776	109200	476049	18748	597424
JAN21	35398	36788	0.9622	280	280	5930	5170	109200	286946	11100	409453
DEC20	44762	46334	0.9661	280	280	7442	7592	109200	361405	15034	488419

The Energy Bills Analysis is carried out to Understanding the Consumption pattern of the Institute

Saving Opportunities

 The Actual Demand is observed to be recorded more than the CMD, it is recommended to enhance the CMD to 425 KVA from 350 KVA and there by Demand charges savings of Rs 16150/- on account of Demand Charges.

2. The Individual Floor Wise Power Factor to be improved to reduce the losses .

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

HVAC- Air Conditioning Systems

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Introduction of Air Conditioning & Refrigeration System:

The present Air conditioning system in the college is of Package Units, Split Air Conditioning units of star rated. The Air conditioning is analyzed for energy saving opportunities. The detailed measurements are taken on sample basis at some of the locations.

_				Sp	lit Air C	onditione	rs 2021					
SI. No	Location	No. of A.C. Unit	Type of A.C.	Rated TR	Power kw	Inlet Temp.(⁰ c)	Outlet Temp.(⁰ c)	Flow m/sec	Arrived TR	Specific Power KW/TR	COP	EER
1	Ground Floor	1	Split AC	1.5	1.152	25.4	23.1	0.45	1.30	0.89	3.97	13.57
2	First Floor	1	Split AC	1.5	1.225	23.7	22.3	0.75	1.32	0.93	3.79	12.93
3	Second Floor	1	Split AC	1.5	1.35	25.4	23.1	0.45	1.30	1.04	3.39	11.57
4	Third Floor	1	Split AC	1.5	1.375	23.2	22.3	0.83	0.94	1.46	2.40	8.20
5	Fourth Floor	1	Split AC	1.5	1.65	24.3	22.8	0.63	1.19	1.39	2.53	8.64
6	Computer Lab	1	Split AC	1.5	1.25	24.5	23.5	0.83	1.04	1.20	2.93	10.07

The Measurements of sample Split AC units are done in blocks and tabulated below

Energy Efficiency Opportunities

Reduce heat loads

Any reduction in heat loads results in a reduction in required refrigeration capacity and therefore energy consumption. There

are three main methods for reducing heat loads:

Improving insulation.

· Reducing air leakage.

Reducing incidental and auxiliary gains.

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowfi, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Insulation improvements

The walls of a refrigerated space should be well maintained to guard against damage or degradation of the insulating material.

visual inspection will give first indications of problems while thermographic inspection will show up cold areas where insulation is poor.

- Air leakage

Air can leak through the degraded fabric of an enclosure or through an access such as a door. Taking the steps outlined above should prevent fabric leakage, while reducing air leakage through doors is outlined below:

Reduce temperature lifts

The efficiency of refrigerating plant is dependent upon the size of the temperature lift between the evaporator and the condenser: the smaller the lift the more efficient the system.

Head pressure control

Many systems maintain a higher lift than is necessary through the use of head pressure control. This practice aims to maintain ahigh pressure in the condenser to ensure a controlled supply of refrigerant to the evaporator. The control pressure can be reduced using a balanced port thermostatic expansion valve or an electronic expansion valve, while the installation of a liquid line pump can further reduce the need for such control. Lowering the control pressure allows the condensing pressure to fall as the outside temperature falls

from the design condition and can improve energy efficiency by50%, particularly during winter. The cost of these measures varies between 15,000 to 150000 if installed at the time of refrigerant replacement and will normally pay back in about two years.

The Package Units measurements are carried out on sample basis at various locations and following are the details tabulated calculating the SPC (Specific Power Consumption), EER(Energy Efficiency Ratio), COP(Coefficient of Performance).

TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Maintenance & Electrical Safety

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

- Electrical Single Line Diagram / Lay Out Diagram / Equipment Layout / Electrical Control diagram
 - i. Check for Unauthorized Temporary Installations
 - ii. Modification to be Updated
 - iii. SLD reflects the actual installation
 - iv. Duly approved by statutory authorities
- 2. Importance of Electrical Safety in the Overall Safety System

Periodicity of comprehensive Electrical Safety check

- i. Understanding of electrical hazards
- Electrical checkpoints in the safety checklist
- iii. Implementation priority for electrical hazards
- iv. Electrical Work Permit System
- v. Safe Electrical Operating Procedures

3 Electrical Preventive Maintenance

- i. Is there an Electrical Preventive Maintenance programme in place
- ii. Is the programme implemented? What is the slippage?
- iii. Are the relevant standards (statutes and non-statutory) referred and incorporated in the EPM programme?
- iv. Electrical Tests, Records, Test Procedure and periodicity (earth resistance, insulation resistance tests)
- v. Is the EPM programme only documented?
- vi. Transformer tests (dielectric strength, acidity, sludge deposits, dissolved gases, etc.) and periodicity
- vii. Periodic calibration of meters (ammeter, voltmeter, relays, temperature gauges) and test instruments (insulation resistance megger, earth resistance megger, multi-meters, etc.)

4 Earthing System

- Installation as per approved design?
- Installation and Maintenance as per IS 3043?
- iii. Earth resistance measured periodically?
- iv. Test procedure
- v. Acceptable earth resistance values
- vi. Is the earthing system modified when electrical installation is modified?
- vii. Are neutral earth pits independent and separate?
- viii. Are earth pits identified?
- ix. Are two and distinct earth connections provided?
- x. Is the earth continuity tested?
- xi. Is bonding and earthing carried out to avoid ESD hazards?

Sri Gayatri Energy Services

Page 19

Annexure I Conversion factors

CONVERSION TABLES

1 Kcal	3.9685 Btu
1 KWh	3413 Btu
1 KWh	860 kcal
1 Btu	1.055 kJ
1 calorie	4.186 joules
t hp	746 Watts
ı kg	2.2 lb (pounds)
1 meters	3.28 feet
1 inch	2.54 cm
1 kg/cm²	14.22 psi
1 atmosphere	1.0332 kg/cm ²
t kg/cm²	10 meters of water column @ 4 °C
kg/cm²	9.807 × 10 4 passels
Ton of Refrigeration	3023 kcal/hour
Ton of Refrigeration	12000 Btu/hour
US Gallon	3.785 liters
imperial Gallon	4.546 liters
F	1.8 × °C + 32
k	°c + 273

Sri Gayatri Energy Services

Page 20

Annexure -II -Abbreviations & Definitions Abbreviations

°C	degrees Celsius
°F	degrees Fahrenheit
Btu	British thermal unit
Btu/ft2	British thermal units per square foot
J/m²	Joules per square meter
kVA	kilovolt-amperes
kW	kilowatts
kWh	kilowatt-hours
kWh/m²	kilowatt-hours per square meter

Definitions:

Basic definitions of terms

Absorber. The component of the vapour absorption chilling package wherein the refrigerant vapour is absorbed by the liquid absorbent.

Air Handling Unit. An air cooling unit, consisting of a blower or blowers, heat exchanger and filters with refrigerant, chilled water or brine on the tube side to perform one or more of the functions of circulating, cooling, cleaning, humidifying, dehumidifying and mixing of air.

Brine. Solution of anti-freeze substances like Sodium Chloride, Calcium Chloride, Mono-ethylene Glycol, Ethyl Alcohol etc.

Coefficient of Performance. The ratio of Net Refrigerating Effect divided by Compressor Shaft Power or Thermal Power Input. The numerator and denominator should be in the same measuring units.

Compressors. Machines in which compression of refrigerant vapour is effected by the positive action of linear motion of pistons, rotating elements (screws, vanes, scrolls etc.) or conversion of velocity energy to pressure in a centrifugal device.

Compressor, hermetic. Sealed compressor & motor unit, where the electric motor is cooled by the refrigerant and both the compressor and electric motor are not accessible for maintenance.

Compressor, open. Compressor is externally coupled to the prime mover and the refrigerant does not cool the prime mover.

Compressor, semi-hermetic. Compressor motor unit, where the electric motor is cooled by the refrigerant and the compressor is accessible for maintenance.

Condenser. The heat exchanger, which utilizes refrigerant to water/air heat transfer, causing the refrigerant to condense and the water/air to be heated. De-superheating or sub-cooling of the refrigerant may also occur.

Sri Gayatri Energy Services

Page 21

Energy Efficiency Ratio. The ratio of Net Refrigerating Effect (Btu/hr) divided by Shaft Power (Watts) or Thermal Power Input (Watts) consumed.

Electric Motor. Electrically operated rotary prime mover.

Enthalpy. The heat content of a substance at a particular temperature.

Engine. Internal combustion engine used as prime mover.

Evaporator. The heat exchanger wherein the refrigerant evaporates and, in the process, cools another fluid I(generally water, brine or air).

Fluid. The substance that is usefully cooled in the chilling package (generally water, brine or air).

Generator. The component of a vapor absorption chilling package wherein the absorbent solution is heated to evaporate the refrigerant and concentrate the absorbent.

Gross Calorific Value. The amount of heat produced per unit of fuel when complete combustion takes place at constant pressure, the products of combustion are cooled to the initial temperature of the fuel and air, and the vapor formed during combustion is condensed.

Net Refrigeration Effect. The useful cooling effect (or heat removal) in the evaporator.

Psychometric Chart. A chart or plotted curves showing the various parameters of air at different temperatures at atmospheric pressure. The parameters shown include dry bulb temperature, wet bulb temperature, relative humidity, moisture content, enthalpy and sensible heat factor.

Refrigerant. The substance that evaporates in the evaporator to provide cooling effect.

Shaft Power. Power at the shaft of any rotary equipment.

Specific Fuel Consumption. The ratio of Thermal Power Input (kg/h of liquid fuel or m3/h of gaseous fuel consumed to the Net Refrigerating Effect (Tons of Refrigeration).

Specific humidity. Mass of water vapor per unit mass of dry air.

Specific Power Consumption. The ratio of Shaft Power (kW) to the Net Refrigerating Effect (Tons of Refrigeration).

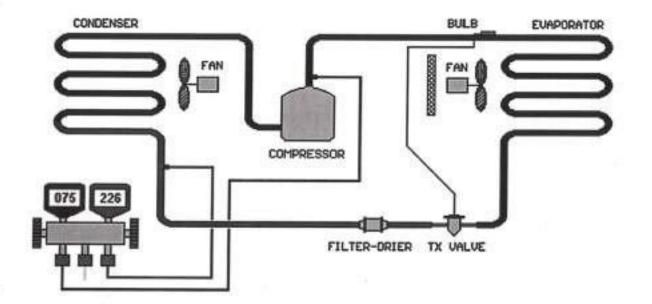
Specific Steam Consumption. The ratio of Thermal Power Input (kg/h of steam) to the Net Refrigerating Effect (Tons of Refrigeration).

Speed. The number of revolutions per minute of the shaft.

Temperature, dry bulb. The temperature indicated by any temperature sensing element when held in air.

Temperature, Inlet. Temperature measured at the inlet stream of the heat exchanger.

Temperature, Outlet. Temperature measured at the outlet stream of the heat exchanger


Sri Gayatri Energy Services

Page 22

Annexure :3 HVAC

Introduction & back ground

Refrigeration Basics

- Refrigeration is the removal of heat from a material or space, so that it's temperature is lower than that of its surroundings.
- When refrigerant absorbs the unwanted heat, this raises the refrigerant's temperature ("Saturation Temperature") so that it changes from a liquid to a gas — it evaporates. The system then uses condensation to release the heat and change the refrigerant back into a liquid. This is called "Latent Heat".
- This cycle is based on the physical principle, that a liquid extracts heat from the surrounding area as it expands (boils) into a gas.
- To accomplish this, the refrigerant is pumped through a closed looped pipe system.
- The closed looped pipe system stops the refrigerant from becoming contaminated and controls its stream. The refrigerant will be both a vapor and a liquid in the loop.

Sri Gayatri Energy Services

Page 23

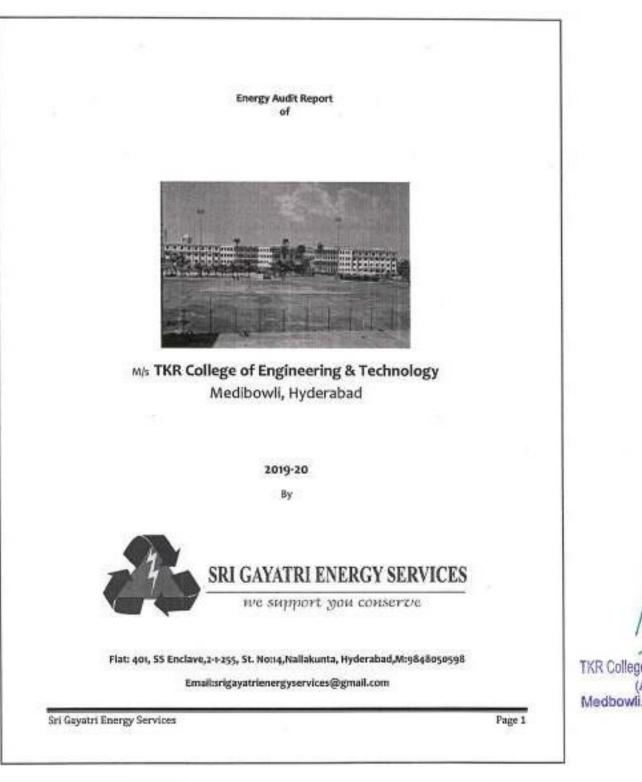
AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Annexure - 4 Lighting

Type of Interior Activity	Range of Service Illuminanac e in Lux	Quality Class of Direct Glare Limitation	Remarks
Educ	ation		
Assembly Halls	200-300-500	3	
Teaching Spaces	200-300-500	1	
Lecture Theatres			
i) General	200-300-500	1	
ii) Demo Benches	300-500- 700	1	Localized Lighting may be appropriate
iii) Seminar Rooms	300-500-750	1	
iv) Art Rooms	300-500-750	1	
v) laboratories	300-500-750	1	
vi) Libraries	200-300-500	1	
vii)Music Rooms	200-300-500	1	
viii) Sports Hall	200-300-500	1	
ix) Work Shop	200-300-500	1	
x)Computer Work station	300-500-750	1	
xi)Bath Rooms	50-100-150		Supplementary local lighting near mirror
xii) Office Rooms	300-500-750	1	
xiii) Entrance Halls, Lobbies	150-200-300	2	
xiv) Corridors, Passageway, Stairs	50-100-150	2	

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services


	Light Source Compari	2011	
Attributes	Incandescent	CEL	LED
Colur Rendering Index	100	Greater than 80	40-80
Watts/ Lamp	100	23	1
Lumen/Lamp	1600	1600	30
Lumen/Watt	16	60-80	20-30
Life (Hrs)	750	8000	50,000

Colour Rendering Index

1500 K	Candlelight		
2680 K	40 W incandescent lamp		
3000 K	200 W incandescent lamp		
3200 K	Sunrise/sunset		
3400 K	Tungsten lamp		
3400 K	1 hour from dusk/dawn		
5000-4500 K	Xenon lamp/light arc		
5500 K	Sunny daylight around noon		
5500-5600 K	Electronic photo flash		
6500-7500 K	Overcast sky		
9000-12000 K	Blue sky		

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Contents ACKNOWLEDGEMENT	
Disclaimer	
Audit Study team	5
LIST OF INSTRUMENTS USED	
CERTIFICATE	
Executive Summary of Observations	
Detailed Walk Through Energy Audit scope of work	
Introduction of the Institution	
Facility Description	
Electrical Load Distribution	
HVAC- Air Conditioning Systems	
Introduction of Air Conditioning & Refrigeration System	
Maintenance & Electrical Safety	
Annexure I	
Annexure -II -Abbreviations &Definitions	
Annexure :3 HVAC	22
Annexure - 4 Lighting	

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

ACKNOWLEDGEMENT

M/s Sri Gayatri Energy Services, Hyderabad places on record its sincere thanks to progressive management of M/s TKR College of Engineering & Technology, Medibowii, Hyderabad, Telangana for entrusting the Energy Audit work of their College.

The study team is appreciative of the keen interest and encouragement shown by

1. Dr Shri T. Harinath Reddy - Secretary

2. Shri T. Amamath Reddy - Treasurer

3. Dr Shri D V Ravi Shankar - Principal

4. Dr. Shri K. Raju - Coordinator

.

Sri Gayatri Energy Services

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Disclaimer

Warranties and Liability

While every effort is made to ensure that the content of this report is accurate, the details provided "as is" make no representations or warranties in relation to the accuracy or completeness of the information found on it. While the content of this report is provided in good faith, we do warrant that the information will be kept up to date, be true and not misleading, or that this report will always (or ever) be available for use.

While implementing the recommendations site inspection should be done to constitute professional approach and adequacy of the site to be established without ambiguity and we exclude all representations and warranties relating to the content and use of this report.

In no event We will be liable for any incidental, indirect, consequential or special damages of any kind, or any damages whatsoever, including, without limitation, those resulting from loss of profit, loss of contracts, goodwill, data, information, income, anticipated savings or business relationships, whether or not advised of the possibility of such damage, arising out of or in connection with the use of this report..

This is a walk through Audit conducted on request of M/s TKR College of Engineering & Technology.

Exceptions

Nothing in this disclaimer notice excludes or limits any warranty implied by law for death, fraud, personal injury through negligence, or anything else which it would not be lawful for to exclude.

We trust the data provided by the M/s TKR College of Engineering & Technology (Autonomous) Medibowli , Hyderabad, Telangana personnel is true to their best of knowledge and a preliminary Report was generated , we didn't verify the correctness of it.

> Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabed-97.

Sri Gayatri Energy Services

Fage 4

Audit Study team		1
Shri D.S.R.Murthy	Senior Energy Auditor	
Shri Durga Rao	Engineer	
Shri Sai Ganesh	Engineer	
LIST OF INSTRUMENTS USED		_
True RMS Power Meter		_
	r (Clamp Type)	_
True RMS Power Meter Digital Earth Resistance mete Digital Earth Resistance Mete	r (Conventional Type , Kyoritsu, Japan)	
True RMS Power Meter Digital Earth Resistance mete	r (Conventional Type , Kyoritsu, Japan)	
True RMS Power Meter Digital Earth Resistance mete Digital Earth Resistance Mete	r (Conventional Type , Kyoritsu, Japan)	
True RMS Power Meter Digital Earth Resistance mete Digital Earth Resistance Mete	r (Conventional Type , Kyoritsu, Japan)	

Principal (R College of Engineering & Technology (AUTONOMOUS) ledbowli, Meerpet, Hyderabad-97.

CERTIFICATE

We here by certify that we carried out Energy Audit in the M/s TKR College of Engineering & Technology Medibowli, Hyderabad., Telangana during 26 November 2019 and following Observations were presented below. The Energy Bills were analyzed for energy consumption ,Power factor , Electrical Load distribution , Distribution Losses if any and Recommendation to reduce the same. We appreciate the efforts of the M/s TKR College of Engineering & Technology, Medibowli, Hyderabad, Telangana for their Pro-Energy Conservation measures in this regard.

For M/s Sri Gayatri Energy Services

Sri Gayatri Energy Services

Page 6

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Executive Summary of Observations

- 1. A Detailed Walk Through Energy Audit is carried out at the Campus with following observations.
- 2. The Power Factor at the Main Incoming panel (after Transformer) is satisfactory .
- It is observed that some of the Split AC's installed are not of star rated, it is recommended to replace them with minimum 3 star rated AC's as and when the opportunity comes.
- 4. It is observed that the Existing Fans installed are Energy Inefficient fans which may be replaced as and when opportunity comes with Energy Efficient one which result in energy savings (Detailed Calculation is enclosed).
- The Loading of the UPS is observed to be moderate, where ever they are found to be low, it is recommended to check for the opportunity to shift the load to the other UPS and switch off the lowly loaded UPS to reduce the losses.
- 6. The recorded Demand exceeded CMD it is recommended to enhance the CMD .

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

was the data to be		
Conservation measures/ Renewable Er 2. Identifying the Energy saving Opportu /devices / system of the electrical insta	th reference to Energy Efficient equipment/ Energy nergy. mities within the premises by installing efficient equipment.	
Project Schedule :		
1. Walk Through Audit	: 1 day	
2. Report generation	: 2-3 Days	
a		
		1.50
		Principal
		Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.
Sri Gayatri Energy Services	Pr	age 8

Introduction of the Institution

TKR College of Engineering and Technology – a modern temple of learning, an off shoot of the TKR Educational Society was established in the year 2002 in a sprawling, jush green 20 acre campus at Meerpet, Hyderabad. The college provides a serene and tranquil environment to the students, boosting their mental potential and preparing them in all aspects to face the cut-throat global competition with a smale on the face and emerge victorious.

Sri Teegala Krishna Reddy, the Mayor of Hyderabad, is the founder chairman of TKR Educational Society. A Philanthropist by nature, "the friend of man, to vice alone of foe", and an urge to see our students excelling themselves in all fields prompted him to start the educational society; making it easy for education to be within arm's length of even a rural student and providing them with an independent and easy in the for pursuing their dreams and making them come true and in the process upholding moral and ethical values.

Facility Description

The Facility Receives Power supply from TSSPDCL at 11 KV, the installed transformer is 11 KV/433 V transformer of 400 KVA and the Contracted Maximum Demand with TSSPDCL is 350 KVA, The total connected Load is around 750.8 KW.

Hence it is recommended to reduce the same.

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Electrical Load Distribution

The incoming power supply is from a 11 KV TSSPDCL, with one Transformers of rating 11kV/433 V 400 KVA, The total connected load is around 750.8 KW. The emergency supply, taken care by DG Sets. All the three Blocks are equipped with UPS supply for Power back up for the computer systems. The details of the connected Load across the campus is given below

	-	-		-	Tota	Conne	cted	Load, k	N	-	-	12.24	
	A TR	Lightin	5	Fans			Split AC's			Computers			Total Cornected
Location	Qty:	Rating (W)	Load, kW	gty	Rating (W)	Load, kW	Qt y	Rating (W)	Load, kW	Qt y	Rating (W)	Load, kW	
GFIOOF	265	36	9.54	231	80	18,48	15	1.175	17.625	46	250	11.50	\$7.15
1 st Floor	39 8	36	14.328	295	80	23.6	28	1,175	32.9	92	285	26.22	97.05
and Floor	754	36	27,144	675	80	54	12	1.175	14.1	375	325	105.63	200.87
3rd Floor	775	36	27.9	63	80	50.72	8	1.175	9.4	532	350	186.20	174-12
4th Floor	755	36	27.18	59 0	80	47.2	7	1.175	8.115	48	300	14.40	97.03
T Block	85	36	3.06	39	ða	3.12	5	1.175	5.875	47	265	12.455	24.51
		1			h h				11			-	750.80

Sri Gayatri Energy Services

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

The Power Measurements are carried out

and the second s	Power Meas	surements a	AY 2017-18	WI THE		19
Location	Phase	Voltage	Ampere	KVA	Power factor	kW
Main Incoming Power Supply	R	237.8	382	90.65	0.98	92.5
	¥	238.5	430.6	102.5	0.995	103.6
	в	241.8	438	105.7	0.96	110.2

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

			- 176	UNITS	CHARGES						
Month	KWH	KVAH	PF	Actual KVA	Billed KVA	TODI	TOD2	Demand	Energy	TOD	Total
NOVig	115090	117828	0.977	385	385	19164	16002	136500	919058	35166	1125250
OCT19	57430	58938	0.974	372	372	9792	9024	145080	459716	18816	636717
SEP19	109850	112722	0.975	391	391	16782	15950	136500	879231	32732	1087362
AUG19	95554	98236	0.973	361	361	14794	14176	136500	766240	28970	946496
JULY19	83636	86200	0.970	359	359	12108	12402	140010	757676	24510	842573
JUN19	95350	97138	0.982	324	324	13946	13994	126360	757676	27940	904160
MAY19	108056	110100	0.981	409	409	14746	14582	159510	858780	29328	1060822
APR19	109424	112086	0.976	400	400	14326	15658	136500	874270	29984	1086947
MAR19	93050	94754	0.982	517	517	13916	13786	136500	849943	31857	1154401
FEB19	91508	94484	0.969	280	280	16840	13616	128700	736975	30456	901800
JAN19	54916	56476	0.972	280	280	9792	8336	109200	440512	18128	571229
DEC18	74996	77370	0.969	302	302	13350	11706	118092	603486	25056	751276

The Energy Bills Analysis is carried out to Understanding the Consumption pattern of the Institute

Saving Opportunities

1. The Actual Demand is observed to be recorded more than the CMD , it is recommended to increase the CMD to 350 KVA from 400 KVA and there by Demand charges penalty of Rs 95950 - on account of Demand Charges.

2. The Individual Blockwise Power Factor to be improved to reduce the losses .

3. The UPS Loading to be improved OR shift the low loaded UPS load to other UPS .

Sri Gayatri Energy Services

Page 12

HVAC- Air Conditioning Systems Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97. Sri Gayatri Energy Services Page 13

10

Introduction of Air Conditioning & Refrigeration System:

The present Air conditioning system in the college is of Package Units , Split Air Conditioning units of star rated . The Air conditioning is analyzed for energy saving opportunities . The detailed measurements are taken on sample basis at some of the locations .

The Measurements of sample Split AC units are done in blocks and tabulated below

-	Split Air Conditioners -2019											-
SI N O	Location	No. of A.C Uni t	Type of A.C.	Rate d TR	Pow er kw	inlet Temp.(* c)	Outlet Temp.(° c)	Flo w m/s ec	Arriv ed TR	Specif ic Powe r KW/T R	CO P	EER
1	First Floor	1	Split AC	1.5	1.152	25.3	22.8	0.39	1.23	0.94	3.7 4	12.7
2	Second Floor	3	Split AC	1.5	1.225	24.7	21.9	0.44	1.55	0.79	4.4	15.1
3	Third Floor		Split AC	1.5	1.35	25.4	23.1	0.45	1.30	1.04	3.3	11.5
4	Fourth Floor	ા	Split AC	1.5	1-375	23.7	22.3	0.36	0.63	2.17	1.6	5-53
5	G Floor	3	Split AC	1.5	1.65	24.3	21.7	0.41	1.34	1.23	2.8	9.75
6	T Block	1	Split AC	1.5	1.525	25.2	22.3	0.38	1.39	1.10	3.1 9	10.9

Energy Efficiency Opportunities

Reduce heat loads

Any reduction in heat loads results in a reduction in required refrigeration capacity and therefore energy consumption. There

are three main methods for reducing heat loads:

Improving insulation.

· Reducing air leakage.

·Reducing incidental and auxiliary gains.

Sri Gayatri Energy Services

Principal

TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Insulation improvements

The walls of a refrigerated space should be well maintained to guard against damage or degradation of the insulating material.

visual inspection will give first indications of problems while thermographic inspection will show up cold areas where insulation is poor.

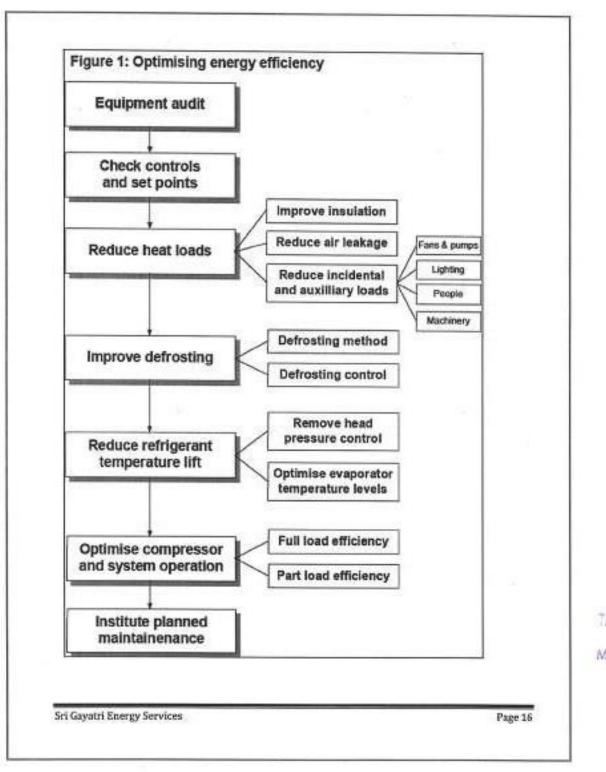
· Air leakage

Air can leak through the degraded fabric of an enclosure or through an access such as a door. Taking the steps outlined above should prevent fabric leakage, while reducing air leakage through doors is outlined below:

Reduce temperature lifts

The efficiency of refrigerating plant is dependent upon the size of the temperature lift between the evaporator and the condenser: the smaller the lift the more efficient the system.

- Head pressure control


Many systems maintain a higher lift than is necessary through the use of head pressure control. This practice aims to maintain ahigh pressure in the condenser to ensure a controlled supply of refrigerant to the evaporator. The control pressure can be reduced using a balanced port thermostatic expansion valve or an electronic expansion valve, while the installation of a liquid line pump can further reduce the need for such control. Lowering the control pressure allows the condensing pressure to fall as the outside temperature falls

from the design condition and can improve energy efficiency by50%, particularly during winter. The cost of these measures varies between 15,000 to 150000 if installed at the time of refrigerant replacement and will normally pay back in about two years.

The Package Units measurements are carried out on sample basis at various locations and following are the details tabulated calculating the SPC (Specific Power Consumption), EER(Energy Efficiency Ratio), COP(Coefficient of Performance).

> Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Maintenance & Electrical Safety Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97. Sri Gayatri Energy Services Page 17

agram L IL II. IV.	le Line Diagram / Lay Out Diagram / Equipment Layout / Electrical Control Check for Unauthorized Temporary Installations Modification to be Updated SLD reflects the actual installation	
н. 11. 17.	Modification to be Updated SLD reflects the actual installation	
н. 11. 17.	Modification to be Updated SLD reflects the actual installation	
111. 1v.	SLD reflects the actual installation	
iv.		
i de la companya de l	Duly approved by statutory authorities	
sportance of	Electrical Safety in the Overall Safety System	
Pe	riodicity of comprehensive Electrical Safety check	
š	Understanding of electrical hazards	
ñ.,	Electrical checkpoints in the safety checklist	
11.	Implementation priority for electrical hazards	
iv.	Electrical Work Permit System	
ectrical Preve	ntive Maintenance	
1.3	Is there an Electrical Proventive Maintenance, processing in stars	
11.	is the programme implemented? What is the disease?	
	Are the relevant standards (stability and nan stability) allowed and	
071523	incornorated in the EPM readramme?	
by.	Electrical Tests, Records, Test Procedure and padadicity (and) and the	
	insulation resistance tests)	
¥.		
	Transformer tests (dielectric strength, pridity cludge deposite direction and	
0.14	etc.) and periodicity	
	gauges) and test instruments (insulation resistance megger, earth resistance	
rthing Syster	n	
		2.4
4.	Installation and Maintenance as per IS 2042?	W //
m.	Earth resistance measured periodically?	
iv.		
v.		MI
viř.	Are neutral earth pits independent and separate?	
		TKR Calle Principal
		TKR College of
x.	is the earth continuity tested?	TKR College of Engineering & Technology
		(AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.
	IL IIL IV. V. ectrical Preve I. II. II. V. VI. VI. VI. VI. VI. VI. V	 I. Is the programme implemented? What is the slippage? II. Are the relevant standards (statutes and non-statutory) referred and incorporated in the EPM programme? iv. Electrical Tests, Records, Test Procedure and periodicity (earth resistance, insulation resistance tests) v. Is the EPM programme only documented? vi. Transformer tests (dielectric strength, addity, sludge deposits, dissolved gases, etc.) and periodicity viii. Periodic calibration of meters (ammeter, voltmeter, relays, temperature gauges) and test instruments (insulation resistance megger, earth resistance megger, multi-meters, etc.) rthing System Installation as per approved design? Installation and Maintenance as per IS 3043? Earth resistance measured periodically? V. Test procedure V. Acceptable earth resistance values Vi. Is the earthing system modified when electrical installation is modified? Vii. Are neutral earth plts independent and separate? Viii. Are two and distinct earth connections provided? x. Is the earth continuity tested?

Annexure I

Conversion factors

CONVERSION TABLES

Kcal	3.9685 Btu
KWh	3413 Btu
KWh	860 kcal
Btu	1.055 kJ
calorie	4.186 joules
hp	746 Watts
kg	2.2 lb (pounds)
meters	3.28 feet
inch	2.54 cm
kg/cm ³	14.22 psi
atmosphere	1.0332 kg/cm²
kg/cm ³	10 meters of water column @ 4 *C
kg/cm ²	9.807 × 10 4 passels
Ton of Refrigeration	3023 kcal/hour
Ton of Refrigeration	12000 Btu/hour
US Gallon	3.785 liters
imperial Gallon	4.546 liters
	1.8 × °C + 32
k	*C + 273

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

1

Sri Gayatri Energy Services

Annexure -II -Abbreviations & Definitions Abbreviations

87	degrees Celsius
Ŧ	degrees Fahrenheit
Btu	British thermal unit
Btu/ft2	British thermal units per square foot
1/m ²	Joules per square meter
kVA	kilovolt-amperes
kW	kilowatts
kWh	kilowatt-hours
kWh/m²	kilowatt-hours per square meter

Definitions:

Basic definitions of terms

Absorber. The component of the vapour absorption chilling package wherein the refrigerant vapour is absorbed by the liquid absorbent.

Air Handling Unit. An air cooling unit, consisting of a blower or blowers, heat exchanger and filters with refrigerant, chilled water or brine on the tube side to perform one or more of the functions of circulating, cooling, cleaning, humidifying, dehumidifying and mixing of air.

Brine. Solution of anti-freeze substances like Sodium Chloride, Calcium Chloride, Mono-ethylene Glycol, Ethyl Alcohol etc.

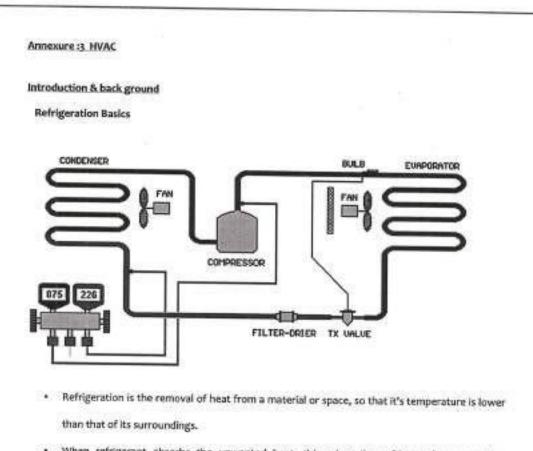
Coefficient of Performance. The ratio of Net Refrigerating Effect divided by Compressor Shaft Power or Thermal Power Input. The numerator and denominator should be in the same measuring units.

Compressors. Machines in which compression of refrigerant vapour is effected by the positive action of linear motion of pistons, rotating elements (screws, vanes, scrolls etc.) or conversion of velocity energy to pressure in a centrifugal device.

Compressor, hermetic. Sealed compressor & motor unit, where the electric motor is cooled by the refrigerant and both the compressor and electric motor are not accessible for maintenance.

Compressor, open. Compressor is externally coupled to the prime mover and the refrigerant does not cool the prime mover.

Compressor, semi-hermetic. Compressor motor unit, where the electric motor is cooled by the refrigerant and the compressor is accessible for maintenance.


Condenser. The heat exchanger, which utilizes refrigerant to water/air heat transfer, causing the refrigerant to condense and the water/air to be heated. De-superheating or sub-cooling of the refrigerant may also occur.

Sri Gayatri Energy Services

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97,

Energy Efficiency Ratio. The ratio of Net Refrigerating Effect (Btufhr) divided by Shaft Power (Watts) or Thermal Power Input (Watts) consumed. Electric Motor. Electrically operated rotary prime mover. Enthalpy. The heat content of a substance at a particular temperature. Engine. Internal combustion engine used as prime mover. Evaporator. The heat exchanger wherein the refrigerant evaporates and, in the process, cools another fluid I(generally water, brine or air). Fluid. The substance that is usefully cooled in the chilling package (generally water, brine or air). Cenerator. The component of a vapor absorption chilling package wherein the absorbent solution is heated to evaporate the refrigerant and concentrate the absorbent. Gross Calorific Value. The amount of heat produced per unit of fuel when complete combustion takes place at constant pressure, the products of combustion are cooled to the initial temperature of the fuel and air, and the vapor formed during combustion is condensed. Net Refrigeration Effect. The useful cooling effect (or heat removal) in the evaporator. Psychometric Chart. A chart or plotted curves showing the various parameters of air at different. temperatures at atmospheric pressure. The parameters shown include dry bulb temperature, wet bulb temperature, relative humidity, moisture content, enthalpy and sensible heat factor. Refrigerant. The substance that evaporates in the evaporator to provide cooling effect. Shaft Power. Power at the shaft of any rotary equipment. Specific Fuel Consumption. The ratio of Thermal Power Input (kg/h of liquid fuel or m3/h of gaseous fuel consumed to the Net Refrigerating Effect (Tons of Refrigeration). Specific humidity. Mass of water vapor per unit mass of dry air. Specific Power Consumption. The ratio of Shaft Power (kW) to the Net Refrigerating Effect (Tons of Refrigeration). Specific Steam Consumption. The ratio of Thermal Power Input (kg/h of steam) to the Net Refrigerating Effect (Tons of Refrigeration). Speed. The number of revolutions per minute of the shaft. Temperature, dry bulb. The temperature indicated by any temperature sensing element when held in air. Temperature, Inlet. Temperature measured at the inlet stream of the heat exchanger. Temperature, Outlet. Temperature measured at the outlet stream of the heat exchanger Sri Gayatri Energy Services Page 21

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

- When refrigerant absorbs the unwanted heat, this raises the refrigerant's temperature ("Saturation Temperature") so that it changes from a liquid to a gas — it evaporates. The system then uses condensation to release the heat and change the refrigerant back into a liquid. This is called "Latent Heat".
- This cycle is based on the physical principle, that a liquid extracts heat from the surrounding area as it expands (boils) into a gas.
- To accomplish this, the refrigerant is pumped through a closed looped pipe system.
- The closed looped pipe system stops the refrigerant from becoming contaminated and controls its stream. The refrigerant will be both a vapor and a liquid in the loop.

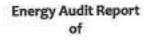
Sri Gayatri Energy Services

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Recommend	ed illumination	Levels as Per IS	646 Part 1-1992
Type of Interior Activity	Range of Service Illuminanac e in Lux	Quality Class of Direct Glare Umitation	Remarks
Educ	ation		
Assembly Halls	200-300-500	3	
Teaching Spaces	200-300-500	1	
Lecture Theatres	1-23-23-21		
i) General	200-300-500	1	
ii) Demo Benches	300-500- 700	1	Localized Lighting may be appropriate
iii) Seminar Rooms	300-500-750	1	
iv) Art Rooms	300-500-750	1	
v) laboratories	300-500-750	1	
vi) Libraries	200-300-500	1	
vii)Music Rooms	200-300-500	1	
viii) Sports Hall	200-300-500	T	
ix) Work Shop	200-300-500	1	
x)Computer Work station	300-500-750	1	
xi)Bath Rooms	50-100-150		Supplementary local lighting near mirror
xii) Office Rooms	300-500-750	1	
xIII) Entrance Halls, Lobbies	150-200-300	2	
xiv) Corridors, Passageway, Stairs	50-100-150	2	

Sri Gayatri Energy Services

Principal TKR College of Engineering & Technology (AUTONOMOLIS) Medbowli, Meerpet, Hyderabad-97.


Light Source Comparison								
Attributes	Incandescent	CFL.	LED					
Colur Rendering Index	100	Greater than 80	40-80					
Watts/ Lamp	100	23	1					
Lumer/Lamp	1600	1600	30					
Lumen/Watt	16	60-80	20-30					
Life (Hrs)	750	8000	50,000					

1500 K	Candlelight	
2680 K	40 W Incandescent lamp	
3000 K	200 W incandescent lamp	
3200 K	Sunrise/sunset	
3400 K	Tungsten lamp	
3400 K	t hour from dusk/dawn	-
5000-4500 K	Xenon lamp/light arc	
5500 K	Sunny daylight around noon	
5500-5600 K	Electronic photo flash	
6500-7500 K	Overcast sky	
9000-12000 K	Blue sky	-

Principal KR Callege of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

.

Sri Gayatri Energy Services

M/s TKR College of Engineering & Technology Medibowli, Hyderabad

2018-19

By

SRI GAYATRI ENERGY SERVICES

we support you conserve

Flat: 401, SS Enclave, 2-1-255, St. No:14, Nallakunta, Hyderabad, M:9848050598

Email:srigayatrienergyservices@gmail.com

Sri Gayatri Energy Services

Principal TKB College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Contents
ACKNOWLEDGEMENT
Disclaimer
Audit Study team
LIST OF INSTRUMENTS USED
CERTIFICATE
Executive Summary of Observations
Detailed Walk Through Energy Audit scope of work
Introduction of the Institution
Facility Description
Electrical Load Distribution
HVAC- Air Conditioning Systems
Introduction of Air Conditioning & Refrigeration System
Maintenance & Electrical Safety
Annexure I 19
Annexure -II -Abbreviations & Definitions
Annexure :3 HVAC
Annexure - 4 Lighting

Sri Gayatri Energy Services

Page 2

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

ACKNOWLEDGEMENT

M/s Sri Gayatri Energy Services, Hyderabad places on record its sincere thanks to progressive management of M/s TKR College of Engineering & Technology, Medibowii, Hyderabad, Telangana for entrusting the Energy Audit work of their College.

The study team is appreciative of the keen interest and encouragement shown by

1. Dr Shri T. Harinath Reddy - Secretary

2. Shri T. Amarnath Reddy – Treasurer

3. Dr Shri D V Ravi Shankar - Principal

4. Dr. Shri K. Raju - Coordinator

Sri Gayatri Energy Services	Page 3
	h
	TKR College of Engineering & Technology
	(AUTONOMOUS) Medbowli, Meerpet, Hyderabed-97

Disclaimer

Warranties and Liability

While every effort is made to ensure that the content of this report is accurate, the details provided "as is" make no representations or warranties in relation to the accuracy or completeness of the information found on it. While the content of this report is provided in good faith, we do warrant that the information will be kept up to date, be true and not misleading, or that this report will always (or ever) be available for use.

While implementing the recommendations site inspection should be done to constitute professional approach and adequacy of the site to be established without ambiguity and we exclude all representations and warranties relating to the content and use of this report.

In no event We will be liable for any incidental, indirect, consequential or special damages of any kind, or any damages whatsoever, including, without limitation, those resulting from loss of profit, loss of contracts, goodwill, data, information, income, anticipated savings or business relationships, whether or not advised of the possibility of such damage, arising out of or in connection with the use of this report.

This is a walk through Audit conducted on request of M/s TKR College of Engineering & Technology.

Exceptions

Nothing in this disclaimer notice excludes or limits any warranty implied by law for death, fraud, personal injury through negligence, or anything else which it would not be lawful for to exclude.

We trust the data provided by the M/s TKR College of Engineering & Technology (Autonomous) Medibowli, Hyderabad, Telangana personnel is true to their best of knowledge and a preliminary Report was generated, we didn't verify the correctness of it.

Sri Gayatri Energy Services

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Audit Study team Shri D.S.R.Murthy

Shri Durga Rao

Shri Sai Ganesh

Engineer

Engineer

Senior Energy Auditor

LIST OF INSTRUMENTS USED

- True RMS Power Meter
- Digital Earth Resistance meter (Clamp Type)
- Digital Earth Resistance Meter (Conventional Type, Kyoritsu, Japan)
- Digital Infrared Thermometer (Fluke)

Sri Gayatri Energy Services

Page 5

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderebad-97.

CERTIFICATE

We here by certify that we carried out Energy Audit in the M/s TKR College of Engineering & Technology Medibowli, Hyderabad., Telangana during 26 November 2019 and following Observations were presented below. The Energy Bills were analyzed for energy consumption ,Power factor , Electrical Load distribution , Distribution Losses if any and Recommendation to reduce the same. We appreciate the efforts of the M/s TKR College of Engineering & Technology, Medibowli, Hyderabad, Telangana for their Pro-Energy Conservation measures in this regard.

For M/s Sri Gayatri Energy Services

Ward starting

Sri Gayatri Energy Services

Page 6

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97. Executive Summary of Observations

- 1. A Detailed Walk Through Energy Audit is carried out at the Campus with following observations.
- 2. The Power Factor at the Main Incoming panel (after Transformer) is satisfactory .
- It is observed that some of the Split AC's installed are not of star rated, it is recommended to replace them with minimum 3 star rated AC's as and when the opportunity comes.
- It is observed that the Existing Fans installed are Energy Inefficient fans which may be replaced as and when opportunity comes with Energy Efficient one which result in energy savings (Detailed Calculation is enclosed).
- The Loading of the UPS is observed to be moderate, where ever they are found to be low, It is recommended to check for the opportunity to shift the load to the other UPS and switch off the lowly loaded UPS to reduce the losses.

6. The recorded Demand exceeded CMD it is recommended to enhance the CMD.

Sri Gayatri Energy Services

Principal TKR Coffege of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Detailed Walk Through Energy Audit scope of work

- Physical inspection of the premises with reference to Energy Efficient equipment/ Energy Conservation measures/ Renewable Energy.
- Identifying the Energy saving Opportunities within the premises by installing efficient equipment /devices / system of the electrical installation.
- 3. Identifying the Energy Saving opportunities by adopting continuous suitable monitoring methods

Project Schedule :

1. Walk Through Audit : 1 day

2. Report generation : 2-3 Days

Sri Gayatri Energy Services
Page 8

Page 8

TKR College of Engineering & Technology
(AUTONOMOUS)

Medbowli, Meerpet, Hyderabad-97.

Introduction of the Institution

TKR College of Engineering and Technology – a modern temple of learning, an off shoot of the TKR Educational Society was established in the year 2002 in a sprawling, lush green 20 acre campus at Meerpet, Hyderabad. The college provides a serene and tranquil environment to the students, boosting their mental potential and preparing them in all aspects to face the cut-throat global competition with a smile on the face and emerge victorious.

Sri Teegala Krishna Reddy, the Mayor of Hyderabad, is the founder chairman of TKR Educational Society. A Philanthropist by nature, "the friend of man, to vice alone of foe", and an urge to see our students excelling themselves in all fields prompted him to start the educational society; making it easy for education to be within arm's length of even a rural student and providing them with an independent and easy in the for pursuing their dreams and making them come true and in the process upholding moral and ethical values.

Facility Description

The Facility Receives Power supply from TSSPDCL at 11 KV, the installed transformer is 11 KV/433 V transformer of 400 KVA and the Contracted Maximum Demand with TSSPDCL is 350 KVA, The total connected Load is around 750.8 KW.

Hence it is recommended to reduce the same.

Sri Gayatri Energy Services

TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabed-97.

Page 9

Electrical Load Distribution

The Incoming power supply is from a 11 KV TSSPDCL, with one Transformers of rating 11kV/433 V 400 KVA, The total connected load is around 750.8 KW. The emergency supply. taken care by DG Sets . All the three Blocks are equipped with UPS supply for Power back up for the computer systems. The details of the connected Load across the campus is given below

TTAK	14				Total	Conne	ted	Load, k	N		2 million		
Location		Lighting	1	Fans			Split AC's			Computers			Total Connected Load , kW
	Qty	Rating (W)	Load, kW	Qty	Rating (W)	Load, kW	Qt y	Rating (W)	Load, kW	Qt Y	Rating (W)	Load, kW	
G Floor	265	36	9.54	231	80	18.48	15	1.175	17.625	46	250	11.50	57.15
1 st Floor	39 8	36	14.328	295	80	23.6	28	1.175	32.9	92	285	26.22	97.05
2nd Floor	754	36	27.144	675	80	54	12	1.175	14.1	325	325	105.63	200.87
3rd Floor	775	36	27.9	63 4	80	50.72	8	1.175	9.4	532	350	186.20	274-22
4th Floor	755	36	27.18	59 0	80	47-2	7	1.175	8.225	48	300	14.40	97.01
T Block	85	36	3.06	39	80	3.12	5	1.175	5.875	47	265	12.455	24.51
-		1000		1550	Number	1.367			10-14		The second	ia.sh	750.80

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

TKR Colleg&of Engineering & Technology (AUTONOMOUS) Medbowil, Meerpet, Hyderabad-97,

U

Pincipal

The Power Measurements are carried out

EAST DE LE REAL	Power Mea	surements /	AY 2017-18		Distances and	
Location	Phase	Voltage	Ampere	kVA	Power factor	kW
Main Incoming Power Supply	R	237.8	382	90.65	0.98	92.5
	Y	238.5	430.6	102.5	0.995	103.6
	В	241.8	438	105.7	0.96	110.2

Sri Gayatri Energy Services

Page 11

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

223	17 2.19	11.	197-1-0	UNITS	CHARGES						
Month	кwн	KVAH	PF	Actual KVA	Billed KVA	TOD1	TOD2	Demand	Energy	TOD	Total
NOV19	115090	117828	0.977	385	385	19164	16002	136500	919058	35166	1125250
OCT19	57430	58938	0.974	372	372	9792	9024	145080	459716	18816	636717
SEP19	109850	112722	0.975	391	391	16782	15950	136500	879231	32732	1087362
AUG19	95554	98236	0.973	361	361	14794	14176	136500	766240	28970	946496
JULY19	83636	86200	0.970	359	359	12108	12402	140010	757676	24510	842573
JUN19	95350	97138	0.982	324	324	13946	13994	126360	757676	27940	904160
MAY19	108056	110100	0.981	409	409	14746	14582	159510	858780	29328	1060822
APR19	109424	112086	0.976	400	400	14326	15658	136500	874270	29984	1086947
MAR19	93050	94754	0.982	517	517	13916	13786	136500	849943	31857	1154401
FEB19	91508	94484	0.969	280	280	16840	13616	128700	736975	30456	901800
JAN19	54916	56476	0.972	280	280	9792	8336	109200	440512	18128	571229
DEC18	74996	77370	0.969	302	302	13350	11706	118092	603486	25056	751276

The Energy Bills Analysis is carried out to Understanding the Consumption pattern of the Institute

Saving Opportunities

1. The Actual Demand is observed to be recorded more than the CMD, it is recommended to increase the CMD to 350 KVA from 400 KVA and there by Demand charges penalty of Rs 95950/- on account of Demand Charges.

2. The Individual Blockwise Power Factor to be improved to reduce the losses .

3. The UPS Loading to be improved OR shift the low loaded UPS load to other UPS .

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

HVAC- Air Conditioning Systems Page 13 Sri Gayatri Energy Services Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Introduction of Air Conditioning & Refrigeration System:

The present Air conditioning system in the college is of Package Units , Split Air Conditioning units of star rated . The Air conditioning is analyzed for energy saving opportunities . The detailed measurements are taken on sample basis at some of the locations .

	Split Air Conditioners -2019											-
SI • N	Location	No. of A.C Uni t	Type of A.C.	Rate d TR	Pow er kw	inlet Temp.(° c)	Outlet Temp.(° c)	Flo w m/s ec	Arriv ed TR	Specif ic Powe r KW/T R	CO P	EER
1	First Floor	1	Split AC	1.5	1.152	25-3	22.8	0.39	1.23	0.94	3.7 4	12.7 9
2	Second Floor	1	Split AC	1.5	1.225	24.7	21.9	0.44	1.55	0.79	4.4 5	15.1 7
3	Third Floor	1	Split AC	1.5	1.35	25.4	23.1	0.45	1.30	1.04	3.3 9	11.5 7
4	Fourth Floor	1	Split AC	1.5	1.375	23.7	22.3	0.36	0.63	2.17	1.6 2	5.53
5	G Floor	1	Split AC	1.5	1.65	24-3	21.7	0.41	1.34	1.23	2.8 6	9.75
6	T Block	1	Split AC	1.5	1.525	25.2	22.3	0.38	1.39	1.10	3.1 9	10.9 0

The Measurements of sample Split AC units are done in blocks and tabulated below

Energy Efficiency Opportunities

Reduce heat loads

Any reduction in heat loads results in a reduction in required refrigeration capacity and therefore energy consumption. There

are three main methods for reducing heat loads:

Improving insulation.

Reducing air leakage.

-Reducing incidental and auxiliary gains.

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Insulation improvements

The walls of a refrigerated space should be well maintained to guard against damage or degradation of the insulating material.

visual inspection will give first indications of problems while thermographic inspection will show up cold areas where insulation is poor.

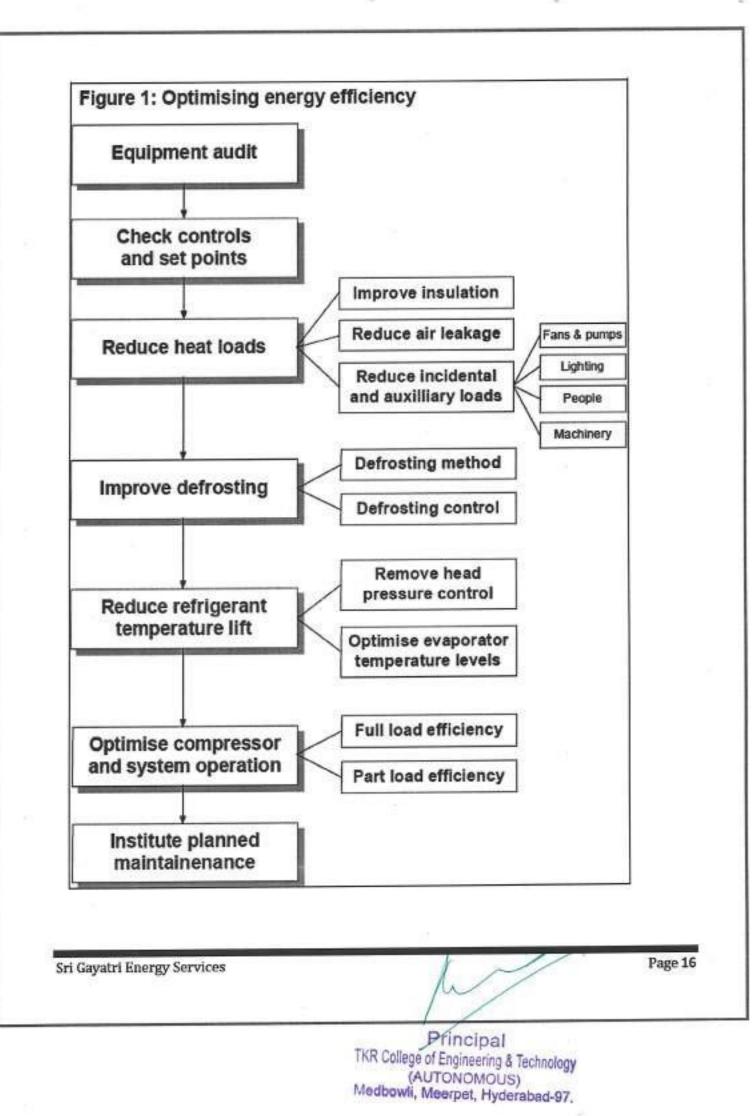
- Air leakage

Air can leak through the degraded fabric of an enclosure or through an access such as a door. Taking the steps outlined above should prevent fabric leakage, while reducing air leakage through doors is outlined below:

Reduce temperature lifts

The efficiency of refrigerating plant is dependent upon the size of the temperature lift between the evaporator and the condenser: the smaller the lift the more efficient the system.

- Head pressure control


Many systems maintain a higher lift than is necessary through the use of head pressure control. This practice aims to maintain ahigh pressure in the condenser to ensure a controlled supply of refrigerant to the evaporator. The control pressure can be reduced using a balanced port thermostatic expansion valve or an electronic expansion valve, while the installation of a liquid line pump can further reduce the need for such control. Lowering the control pressure allows the condensing pressure to fall as the outside temperature falls

from the design condition and can improve energy efficiency by50%, particularly during winter. The cost of these measures varies between 15,000 to 150000 if installed at the time of refrigerant replacement and will normally pay back in about two years.

The Package Units measurements are carried out on sample basis at various locations and following are the details tabulated calculating the SPC (Specific Power Consumption), EER(Energy Efficiency Ratio), COP(Coefficient of Performance).

TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Maintenance & Electrical Safety

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

- Electrical Single Line Diagram / Lay Out Diagram / Equipment Layout / Electrical Control diagram
 - i. Check for Unauthorized Temporary Installations
 - ii. Modification to be Updated
 - iii. SLD reflects the actual installation
 - iv. Duly approved by statutory authorities

2. Importance of Electrical Safety in the Overall Safety System

Periodicity of comprehensive Electrical Safety check

- i. Understanding of electrical hazards
- ii. Electrical checkpoints in the safety checklist
- iii. Implementation priority for electrical hazards
- iv. Electrical Work Permit System
- v. Safe Electrical Operating Procedures

3 Electrical Preventive Maintenance

- Is there an Electrical Preventive Maintenance programme in place
- ii. Is the programme implemented? What is the slippage?
- iii. Are the relevant standards (statutes and non-statutory) referred and incorporated in the EPM programme?
- iv. Electrical Tests, Records, Test Procedure and periodicity (earth resistance, insulation resistance tests)
- v. Is the EPM programme only documented?
- vi. Transformer tests (dielectric strength, acidity, sludge deposits, dissolved gases, etc.) and periodicity
- vii. Periodic calibration of meters (ammeter, voltmeter, relays, temperature gauges) and test instruments (insulation resistance megger, earth resistance megger, multi-meters, etc.)

4 Earthing System

- i. Installation as per approved design?
- Installation and Maintenance as per IS 3043?
- iii. Earth resistance measured periodically?
- iv. Test procedure
- v. Acceptable earth resistance values
- vi. Is the earthing system modified when electrical installation is modified?
- vii. Are neutral earth pits independent and separate?
- viii. Are earth pits identified?
- Ix. Are two and distinct earth connections provided?
- x. Is the earth continuity tested?
- xi. Is bonding and earthing carried out to avoid ESD hazards?

Sri Gayatri Energy Services

Page 18

(AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97. Annexure I Conversion factors

CONVERSION TABLES

1 Kcal	3.9685 Btu
1 KWh	3413 Btu
1 KWh	860 kcal
1 Btu	1.055 kJ
1 calorie	4.186 joules
1 hp	746 Watts
1 kg	2.2 lb (pounds)
1 meters	3.28 feet
1 inch	2.54 cm
1 kg/cm²	14.22 psi
1 atmosphere	1.0332 kg/cm ²
1 kg/cm²	10 meters of water column @ 4 °C
1 kg/cm²	9.807 × 10 4 passels
1 Ton of Refrigeration	3023 kcal/hour
1 Ton of Refrigeration	12000 Btu/hour
1 US Gallon	3.785 liters
1 imperial Gallon	4.546 liters
٩F	1.8 × °C + 32
°k	°c + 273

Sri Gayatri Energy Services

Page 19

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97. Annexure -II -Abbreviations & Definitions Abbreviations

°C	degrees Celsius
۴	degrees Fahrenheit
Btu	British thermal unit
Btu/ft2	British thermal units per square foot
J/m²	Joules per square meter
kVA	kilovolt-amperes
kW	kilowatts
kWh	kilowatt-hours
kWh/m*	kilowatt-hours per square meter

Definitions:

Basic definitions of terms

Absorber. The component of the vapour absorption chilling package wherein the refrigerant vapour is absorbed by the liquid absorbent.

Air Handling Unit. An air cooling unit, consisting of a blower or blowers, heat exchanger and filters with refrigerant, chilled water or brine on the tube side to perform one or more of the functions of circulating, cooling, cleaning, humidifying, dehumidifying and mixing of air.

Brine. Solution of anti-freeze substances like Sodium Chloride, Calcium Chloride, Mono-ethylene Glycol, Ethyl Alcohol etc.

Coefficient of Performance. The ratio of Net Refrigerating Effect divided by Compressor Shaft Power or Thermal Power Input. The numerator and denominator should be in the same measuring units.

Compressors. Machines in which compression of refrigerant vapour is effected by the positive action of linear motion of pistons, rotating elements (screws, vanes, scrolls etc.) or conversion of velocity energy to pressure in a centrifugal device.

Compressor, hermetic. Sealed compressor & motor unit, where the electric motor is cooled by the refrigerant and both the compressor and electric motor are not accessible for maintenance.

Compressor, open. Compressor is externally coupled to the prime mover and the refrigerant does not cool the prime mover.

Compressor, semi-hermetic. Compressor motor unit, where the electric motor is cooled by the refrigerant and the compressor is accessible for maintenance.

Condenser. The heat exchanger, which utilizes refrigerant to water/air heat transfer, causing the refrigerant to condense and the water/air to be heated. De-superheating or sub-cooling of the refrigerant may also occur.

Sri Gayatri Energy Services

Page 20

Frincipal TKR College of Engineering & Technology (AUTONOMOUS) Medbowfi, Meerpet, Hyderabad-97. Energy Efficiency Ratio. The ratio of Net Refrigerating Effect (Btu/hr) divided by Shaft Power (Watts) or Thermal Power Input (Watts) consumed.

Electric Motor. Electrically operated rotary prime mover.

Enthalpy. The heat content of a substance at a particular temperature.

Engine. Internal combustion engine used as prime mover.

Evaporator. The heat exchanger wherein the refrigerant evaporates and, in the process, cools another fluid I(generally water, brine or air).

Fluid. The substance that is usefully cooled in the chilling package (generally water, brine or air).

Generator. The component of a vapor absorption chilling package wherein the absorbent solution is heated to evaporate the refrigerant and concentrate the absorbent.

Gross Calorific Value. The amount of heat produced per unit of fuel when complete combustion takes place at constant pressure, the products of combustion are cooled to the initial temperature of the fuel and air, and the vapor formed during combustion is condensed.

Net Refrigeration Effect. The useful cooling effect (or heat removal) in the evaporator.

Psychometric Chart. A chart or plotted curves showing the various parameters of air at different temperatures at atmospheric pressure. The parameters shown include dry bulb temperature, wet bulb temperature, relative humidity, moisture content, enthalpy and sensible heat factor.

Refrigerant. The substance that evaporates in the evaporator to provide cooling effect.

Shaft Power. Power at the shaft of any rotary equipment.

Specific Fuel Consumption. The ratio of Thermal Power Input (kg/h of liquid fuel or m3/h of gaseous fuel consumed to the Net Refrigerating Effect (Tons of Refrigeration).

Specific humidity. Mass of water vapor per unit mass of dry air.

Specific Power Consumption. The ratio of Shaft Power (kW) to the Net Refrigerating Effect (Tons of Refrigeration).

Specific Steam Consumption. The ratio of Thermal Power Input (kg/h of steam) to the Net Refrigerating Effect (Tons of Refrigeration).

Speed. The number of revolutions per minute of the shaft.

Temperature, dry bulb. The temperature indicated by any temperature sensing element when held in air.

Temperature, Inlet. Temperature measured at the inlet stream of the heat exchanger.

Temperature, Outlet. Temperature measured at the outlet stream of the heat exchanger

Sri Gayatri Energy Services

Page 21

TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Annexure :3 HVAC

Introduction & back ground

Refrigeration Basics

- Refrigeration is the removal of heat from a material or space, so that it's temperature is lower than that of its surroundings.
- When refrigerant absorbs the unwanted heat, this raises the refrigerant's temperature ("Saturation Temperature") so that it changes from a liquid to a gas — it evaporates. The system then uses condensation to release the heat and change the refrigerant back into a liquid. This is called "Latent Heat".
- This cycle is based on the physical principle, that a liquid extracts heat from the surrounding area as it expands (boils) into a gas.
- To accomplish this, the refrigerant is pumped through a closed looped pipe system.
- The closed looped pipe system stops the refrigerant from becoming contaminated and controls its stream. The refrigerant will be both a vapor and a liquid in the loop.

Sri Gayatri Energy Services

Page 22

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Annexure - 4 Lighting

Type of Interior Activity	Range of Service Illuminanac e in Lux	Quality Class of Direct Glare Limitation	Remarks	
Educ	ation			
Assembly Halls	200-300-500	3		
Teaching Spaces	200-300-500	1		
Lecture Theatres				
i) General	200-300-500	1		
ii) Demo Benches	300-500- 700	1	Localized Lighting may be appropriate	
ili) Seminar Rooms	300-500-750	1		
iv) Art Rooms	300-500-750	1		
v) laboratories	300-500-750	1		
vi) Libraries	200-300-500	1		
vii)Music Rooms	200-300-500	1		
viii) Sports Hall	200-300-500	1		
ix) Work Shop	200-300-500	1		
x)Computer Work station	300-500-750	1		
xi)Bath Rooms	50-100-150		Supplementary local lighting near mirror	
xii) Office Rooms	300-500-750	1		
xiii) Entrance Halls, Lobbies	150-200-300	2		
xiv) Corridors, Passageway, Stairs	50-100-150	2		

Sri Gayatri Energy Services

Page 23

TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Light Source Comparison				
Attributes	Incandescent	CFL	LED	
Colur Rendering Index	100	Greater than 80	40-80	
Watts/ Lamp	100	23	1	
Lumen/Lamp	1600	1600	30	
Lumen/Watt	16	60-80	20-30	
Life (Hrs)	750	8000	50,000	

Colour Rendering Index

1500 K	Candlelight	
2680 K	40 W incandescent lamp	
3000 K	200 W incandescent lamp	
3200 K	Sunrise/sunset	
3400 K	Tungsten lamp	
3400 K	1 hour from dusk/dawn	
5000-4500 K	Xenon lamp/light arc	
5500 K	Sunny daylight around noon	
5500-5600 K	Electronic photo flash	
6500-7500 K	Overcast sky	
9000-12000 K	Blue sky	

1/

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Energy Audit Report of

M/s TKR College of Engineering & Technology Medbowli, Hyderabad

2017-18

By

SRI GAYATRI ENERGY SERVICES

we support you conserve

Flat: 401, SS Enclave,2-1-255, St. No:14,Nallakunta, Hyderabad,M:9848050598

Email:srigayatrienergyservices@gmail.com

Sri Gayatri Energy Services

Page 1

Principal TKR College of Engineering & Technology (AUTONOMOUS) Mechowil, Meerpet, Hyderabad-97.

Contents	
ACKNOWLEDGEMENT	3
Disclaimer	4
Audit Study team	5
LIST OF INSTRUMENTS USED	5
CERTIFICATE	6
Executive Summary of Observations	7
Detailed Walk Through Energy Audit scope of work	8
Introduction of the Institution	9
Facility Description	9
Electrical Load Distribution	10
HVAC- Air Conditioning Systems	13
Introduction of Air Conditioning & Refrigeration System	14
Maintenance & Electrical Safety	17
Annexure I	19
Annexure -II -Abbreviations & Definitions	20
Annexure :3 HVAC	22
Annexure - 4 Lighting	23

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

ACKNOWLEDGEMENT

M/s Sri Gayatri Energy Services, Hyderabad places on record its sincere thanks to progressive management of M/s TKR College of Engineering & Technology, Medibowli, Hyderabad, Telangana for entrusting the Energy Audit work of their College.

The study team is appreciative of the keen interest and encouragement shown by

1. Dr Shri T. Harinath Reddy - Secretary

2. Shri T. Amarnath Reddy - Treasurer

3. Dr Shri D V Ravi Shankar - Principal

4. Dr. Shri K. Raju - Coordinator

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Disclaimer Warranties and Liability

While every effort is made to ensure that the content of this report is accurate, the details provided "as is" make no representations or warranties in relation to the accuracy or completeness of the information found on it. While the content of this report is provided in good faith, we do warrant that the information will be kept up to date, be true and not misleading, or that this report will always (or ever) be available for use.

While implementing the recommendations site inspection should be done to constitute professional approach and adequacy of the site to be established without ambiguity and we exclude all representations and warranties relating to the content and use of this report.

In no event We will be liable for any incidental, indirect, consequential or special damages of any kind, or any damages whatsoever, including, without limitation, those resulting from loss of profit, loss of contracts, goodwill, data, information, income, anticipated savings or business relationships, whether or not advised of the possibility of such damage, arising out of or in connection with the use of this report.

This is a walk through Audit conducted on request of M/s TKR College of Engineering & Technology.

Exceptions

Nothing in this disclaimer notice excludes or limits any warranty implied by law for death, fraud, personal injury through negligence, or anything else which it would not be lawful for to exclude.

We trust the data provided by the M/s TKR College of Engineering & Technology (Autonomous) Medibowli, Hyderabad, Telangana personnel is true to their best of knowledge and a preliminary Report was generated, we didn't verify the correctness of it.

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Audit Study team Shri D.S.R.Murthy

Senior Energy Auditor

Shri Durga Rao

Shri Sai Ganesh

Engineer

Engineer

LIST OF INSTRUMENTS USED

- True RMS Power Meter
- Digital Earth Resistance meter (Clamp Type)
- Digital Earth Resistance Meter (Conventional Type, Kyoritsu, Japan)
- Digital Infrared Thermometer (Fluke)

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

CERTIFICATE

We here by certify that we carried out Walk Through Energy Audit in the M/s TKR College of Engineering & Technology Medibowli, Hyderabad., Telangana during 12 December 2018 and following Observations were presented below. The Energy Bills were analyzed for energy consumption ,Power factor , Electrical Load distribution , Distribution Losses if any and Recommendation to reduce the same. We appreciate the efforts of the M/s TKR College of Engineering & Technology, Medibowli, Hyderabad, Telangana for their Pro-Energy Conservation measures in this regard.

For M/s Srl Gayatri Energy Services

/Brincipal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Executive Summary of Observations

- 1. A Detailed Walk Through Energy Audit is carried out at the Campus with following observations.
- The Power Factor at the Main Incoming panel (after Transformer) is satisfactory.
- It is observed that some of the Split AC's installed are not of star rated, it is recommended to replace them with minimum 3 star rated AC's as and when the opportunity comes.
- It is observed that the Existing Fans installed are Energy Inefficient fans which may be replaced as and when opportunity comes with Energy Efficient one which result in energy savings (Detailed Calculation is enclosed).
- The Loading of the UPS is observed to be moderate, where ever they are found to be low, It is recommended to check for the opportunity to shift the load to the other UPS and switch off the lowly loaded UPS to reduce the losses.
- 6. The recorded Demand exceeded CMD it is recommended to enhance the CMD .

1

AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Detailed Walk Through Energy Audit scope of work

- Physical inspection of the premises with reference to Energy Efficient equipment/ Energy Conservation measures/ Renewable Energy.
- Identifying the Energy saving Opportunities within the premises by installing efficient equipment /devices / system of the electrical installation.
- 3. Identifying the Energy Saving opportunities by adopting continuous suitable monitoring methods

Project Schedule :

1. Walk Through Audit : 1 day

2. Report generation : 2-3 Days

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Introduction of the Institution

TKR College of Engineering and Technology – a modern temple of learning, an off shoot of the TKR Educational Society was established in the year 2002 in a sprawling, lush green 20 acre campus at Meerpet, Hyderabad. The college provides a serene and tranquil environment to the students, boosting their mental potential and preparing them in all aspects to face the cut- throat global competition with a smile on the face and emerge victorious.

Sri Teegala Krishna Reddy, the Mayor of Hyderabad, is the founder chairman of TKR Educational Society. A Philanthropist by nature, "the friend of man, to vice alone of foe", and an urge to see our students excelling themselves in all fields prompted him to start the educational society; making it easy for education to be within arm's length of even a rural student and providing them with an independent and easy in the for pursuing their dreams and making them come true and in the process upholding moral and ethical values.

Facility Description

The Facility Receives Power supply from TSSPDCL at 11 KV, the installed transformer is 11 KV/433 V transformer of 400 KVA and the Contracted Maximum Demand with TSSPDCL is 350 KVA, The total connected Load is around 710 KW.

Hence it is recommended to reduce the same.

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Electrical Load Distribution

The Incoming power supply is from a 11 KV TSSPDCL, with one Transformers of rating 11kV/433 V 400 KVA, The total connected load is around 710.93 KW. The emergency supply, taken care by DG Sets. All the three Blocks are equipped with UPS supply for Power back up for the computer systems. The details of the connected Load across the campus is given below

	-			1.00	Total	Conne	cted	Load, k	N	17.45	1.3		16
		Lighting		1	Fans			Split AC	's		Compute	45	Total Connected Load, kW
Location	Qty	Rating (W)	Load, kW	Qty	Rating (W)	Load, kW	Qt	Rating (W)	Load, kW	Qt	Rating (W)	Load, kW	
G Floor	265	36	9.54	231	80	18.48	7	1.175	8.225	46	250	11.50	47.75
1 st Floor	39 8	36	14.328	295	80	23.6	19	1.175	22.325	92	285	26.22	86.47
2nd Floor	725	36	26.1	675	80	54	12	1.175	14.1	30 5	325	99.13	193.33
3rd Floor	675	36	24.3	63 4	80	50.72	8	1.175	9.4	50 7	350	177.45	-261.87
4th Floor	755	36	27.18	59 0	80	47.2	7	1.175	8.225	48	300	14.40	97.01
T Block	85	36	3.06	39	80	3.12	5	1.175	5.875	47	265	12.455	24.51
				4				-					710.93

Principal TKR College of Engineering & Technology (AUTONOMOUS)

Sri Gayatri Energy Services

The Power Measurements are carried out

	Power Mea	surements /	AY 2017-18			
Location	Phase	Voltage	Ampere	kVA	Power factor	kW
Main Incoming Power Supply	R	237.8	341	80.85	0.98	82.5
AND	Y	238.5	363	86.4	0.995	87.3
	В	241.8	364	87.8	0.96	91.,5

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

		a	57	UNITS		CHARGES					
Month	KWH	KVAH	PF	Actual KVA	Billed KVA	TOD1	TOD2	Demand	Energy	TOD	Total
NOV18	96840	99526	0.973	350	350	15684	13454	136500	776302	29138	956180
OCT18	88454	90600	0.976	411	411	13766	12700	136500	706680	26466	922818
SEP18	101682	103960	0.978	379	379	15612	13286	136500	810888	28898	1005299
AUG18	94962	96924	0.980	350	350	15204	12724	136500	756007	27928	934518
JULY18	73578	76116	0.967	298	298	10488	9084	116298	593704	19572	734141
JUN18	71956	74434	0.967	304	304	10776	8494	118716	580585	19270	723037
MAY18	70830	72954	0.971	323	323	10984	8636	126204	569041	19620	719242
APR18	88830	89996	0.987	347	347	11738	11640	135330	701812	23378	865919
MAR18	82456	82476	0.9998	462	462	12178	10090	136500	739809	25608	994694
FEB18	72830	72892	0.999	280	280	13121	12700	109200	568557	23022	694349
JAN18	54514	54992	0.991	280	280	8934	8943	109200	428937	17886	551144
DEC17	67286	67286	1.000	280	280	10469	10469	109200	524830	20938	633855

The Energy Bills Analysis is carried out to Understanding the Consumption pattern of the Institute

Saving Opportunities

1. The Actual Demand is observed to be recorded more than the CMD, it is recommended to increase the CMD to 350 KVA from 400 KVA and there by Demand charges penalty of Rs 95950/- on account of Demand Charges.

2. The Individual Blockwise Power Factor to be improved to reduce the losses.

3. The UPS Loading to be improved OR shift the low loaded UPS load to other UPS .

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

HVAC- Air Conditioning Systems

K

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Introduction of Air Conditioning & Refrigeration System:

The present Air conditioning system in the college is of Package Units, Split Air Conditioning units of star rated. The Air conditioning is analyzed for energy saving opportunities. The detailed measurements are taken on sample basis at some of the locations.

-			Spli	it Ai	ir Co	onditio	oners	-20	18			
SI N o	Location	No. of A.C Uni t	Type of A.C.	Rate d TR	Pow er kw	Iniet Temp.(° c)	Outlet Temp.(° c)	Flo w m/s ec	Arriv ed TR	Specif ic Powe r KW/T R	CO P	EER
1	First Floor	1	Split AC	1.5	1.152	25.3	22.8	0.39	1.23	0.94	3.7 4	12.7 9
2	Second Floor	1	Split AC	1.5	1.225	24.7	21.9	0.44	1.55	0.79	4.4	15.1 7
3	Third Floor	1	Split AC	1.5	1.35	25.4	23.1	0.45	1.30	1.04	3.3 9	11.5 7
4	Fourth Floor	1	Split AC	1.5	1.375	23.7	22.3	0.36	0.63	2.17	1.6 2	5-53
5	G Floor	а.	Split AC	1.5	1.65	24.3	21.7	0.41	1.34	1.23	2.8 6	9.75
6	T Block	1	Split AC	1.5	1.525	25.2	22.3	0.38	1.39	1,10	3.1 9	10.9 0

The Measurements of sample Split AC units are done in blocks and tabulated below

Energy Efficiency Opportunities

Reduce heat loads

Any reduction in heat loads results in a reduction in required refrigeration capacity and therefore energy consumption. There

are three main methods for reducing heat loads:

Improving insulation.

Reducing air leakage.

Reducing incidental and auxiliary gains.

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Insulation improvements

The walls of a refrigerated space should be well maintained to guard against damage or degradation of the insulating material.

visual inspection will give first indications of problems while thermographic inspection will show up cold areas where insulation is poor.

- Air leakage

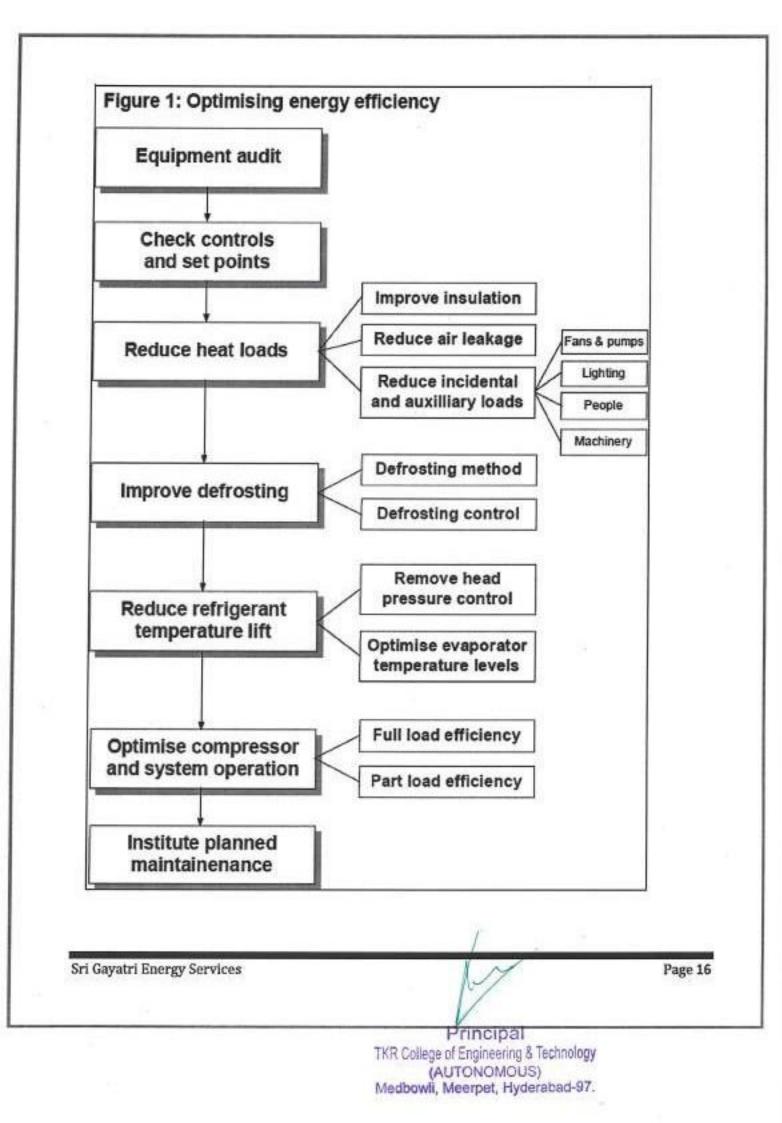
Air can leak through the degraded fabric of an enclosure or through an access such as a door. Taking the steps outlined above should prevent fabric leakage, while reducing air leakage through doors is outlined below:

Reduce temperature lifts

The efficiency of refrigerating plant is dependent upon the size of the temperature lift between the evaporator and the condenser: the smaller the lift the more efficient the system.

Head pressure control

Many systems maintain a higher lift than is necessary through the use of head pressure control. This practice aims to maintain ahigh pressure in the condenser to ensure a controlled supply of refrigerant to the evaporator. The control pressure can be reduced using a balanced port thermostatic expansion valve or an electronic expansion valve, while the installation of a liquid line pump can further reduce the need for such control. Lowering the control pressure allows the condensing pressure to fall as the outside temperature falls


from the design condition and can improve energy efficiency by50%, particularly during winter. The cost of these measures varies between 15,000 to 150000 if installed at the time of refrigerant replacement and will normally pay back in about two years.

The Package Units measurements are carried out on sample basis at various locations and following are the details tabulated calculating the SPC (Specific Power Consumption), EER(Energy Efficiency Ratio), COP(Coefficient of Performance).

Principal

TKR College of Engineering & Technology (AUTONOMOUS) Medbowii, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Maintenance & Electrical Safety

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

- Electrical Single Line Diagram / Lay Out Diagram / Equipment Layout / Electrical Control diagram
 - i. Check for Unauthorized Temporary Installations
 - ii. Modification to be Updated
 - iii. SLD reflects the actual installation
 - iv. Duly approved by statutory authorities
- 2. Importance of Electrical Safety in the Overall Safety System

Periodicity of comprehensive Electrical Safety check

- i. Understanding of electrical hazards
- ii. Electrical checkpoints in the safety checklist
- iii. Implementation priority for electrical hazards
- iv. Electrical Work Permit System
- v. Safe Electrical Operating Procedures
- 3 Electrical Preventive Maintenance
 - i. Is there an Electrical Preventive Maintenance programme in place
 - ii. Is the programme implemented? What is the slippage?
 - iii. Are the relevant standards (statutes and non-statutory) referred and incorporated in the EPM programme?
 - iv. Electrical Tests, Records, Test Procedure and periodicity (earth resistance, insulation resistance tests)
 - v. Is the EPM programme only documented?
 - Transformer tests (dielectric strength, acidity, sludge deposits, dissolved gases, etc.) and periodicity
 - vii. Periodic calibration of meters (ammeter, voltmeter, relays, temperature gauges) and test instruments (insulation resistance megger, earth resistance megger, multi-meters, etc.)

4 Earthing System

- i. Installation as per approved design?
- Installation and Maintenance as per IS 3043?
- iii. Earth resistance measured periodically?
- iv. Test procedure
- Acceptable earth resistance values
- vi. Is the earthing system modified when electrical installation is modified?
- vii. Are neutral earth pits independent and separate?
- viii. Are earth pits identified?
- ix. Are two and distinct earth connections provided?
- x. Is the earth continuity tested?
- xi. Is bonding and earthing carried out to avoid ESD hazards?

Sri Gayatri Energy Services

Page 18

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97. Annexure I

Conversion factors

CONVERSION TABLES

1 Kcal	3.9685 Btu
1 KWh	3413 Btu
1 KWh	860 kcal
1 Btu	1.055 kJ
1 calorie	4.186 joules
1 hp	746 Watts
1 kg	2.2 lb (pounds)
1 meters	3.28 feet
1 inch	2.54 cm
1 kg/cm²	14.22 psi
1 atmosphere	1.0332 kg/cm ²
1 kg/cm²	10 meters of water column @ 4 °C
1 kg/cm²	9.807 × 10 4 passels
1 Ton of Refrigeration	3023 kcal/hour
1 Ton of Refrigeration	12000 Btu/hour
t US Gallon	3.785 liters
t imperial Gallon	4.546 liters
۶F	1.8 × °C + 32
ĸ	°C + 273

Sri Gayatri Energy Services

Page 19

TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Principal

Annexure -II -Abbreviations & Definitions Abbreviations

°C	degrees Celsius
۴F	degrees Fahrenheit
Btu	British thermal unit
Btu/ft2	British thermal units per square foot
J/m²	Joules per square meter
kVA	kilovolt-amperes
kW	kilowatts
kWh	kilowatt-hours
kWh/m²	kilowatt-hours per square meter

Definitions:

Basic definitions of terms

Absorber. The component of the vapour absorption chilling package wherein the refrigerant vapour is absorbed by the liquid absorbent.

Air Handling Unit. An air cooling unit, consisting of a blower or blowers, heat exchanger and filters with refrigerant, chilled water or brine on the tube side to perform one or more of the functions of circulating, cooling, cleaning, humidifying, dehumidifying and mixing of air.

Brine. Solution of anti-freeze substances like Sodium Chloride, Calcium Chloride, Mono-ethylene Glycol, Ethyl Alcohol etc.

Coefficient of Performance. The ratio of Net Refrigerating Effect divided by Compressor Shaft Power or Thermal Power Input. The numerator and denominator should be in the same measuring units.

Compressors. Machines in which compression of refrigerant vapour is effected by the positive action of linear motion of pistons, rotating elements (screws, vanes, scrolls etc.) or conversion of velocity energy to pressure in a centrifugal device.

Compressor, hermetic. Sealed compressor & motor unit, where the electric motor is cooled by the refrigerant and both the compressor and electric motor are not accessible for maintenance.

Compressor, open. Compressor is externally coupled to the prime mover and the refrigerant does not cool the prime mover.

Compressor, semi-hermetic. Compressor motor unit, where the electric motor is cooled by the refrigerant and the compressor is accessible for maintenance.

Condenser. The heat exchanger, which utilizes refrigerant to water/air heat transfer, causing the refrigerant to condense and the water/air to be heated. De-superheating or sub-cooling of the refrigerant may also occur.

Sri Gayatri Energy Services

Page 20

TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97. Energy Efficiency Ratio. The ratio of Net Refrigerating Effect (Btu/hr) divided by Shaft Power (Watts) or Thermal Power Input (Watts) consumed.

Electric Motor. Electrically operated rotary prime mover.

Enthalpy. The heat content of a substance at a particular temperature.

Engine. Internal combustion engine used as prime mover.

Evaporator. The heat exchanger wherein the refrigerant evaporates and, in the process, cools another fluid (generally water, brine or air).

Fluid. The substance that is usefully cooled in the chilling package (generally water, brine or air).

Generator. The component of a vapor absorption chilling package wherein the absorbent solution is heated to evaporate the refrigerant and concentrate the absorbent.

Gross Calorific Value. The amount of heat produced per unit of fuel when complete combustion takes place at constant pressure, the products of combustion are cooled to the initial temperature of the fuel and air, and the vapor formed during combustion is condensed.

Net Refrigeration Effect. The useful cooling effect (or heat removal) in the evaporator.

Psychometric Chart. A chart or plotted curves showing the various parameters of air at different temperatures at atmospheric pressure. The parameters shown include dry bulb temperature, wet bulb temperature, relative humidity, moisture content, enthalpy and sensible heat factor.

Refrigerant. The substance that evaporates in the evaporator to provide cooling effect.

Shaft Power. Power at the shaft of any rotary equipment.

Specific Fuel Consumption. The ratio of Thermal Power Input (kg/h of liquid fuel or m3/h of gaseous fuel consumed to the Net Refrigerating Effect (Tons of Refrigeration).

Specific humidity. Mass of water vapor per unit mass of dry air.

Specific Power Consumption. The ratio of Shaft Power (kW) to the Net Refrigerating Effect (Tons of Refrigeration).

Specific Steam Consumption. The ratio of Thermal Power Input (kg/h of steam) to the Net Refrigerating Effect (Tons of Refrigeration).

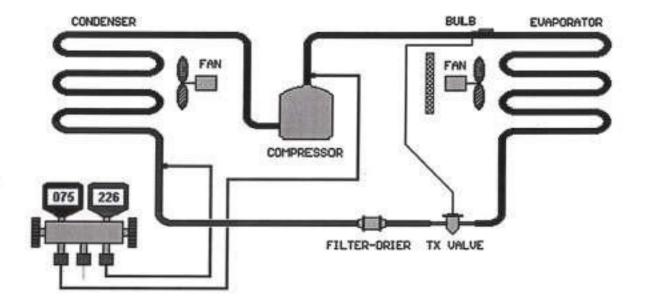
Speed. The number of revolutions per minute of the shaft.

Temperature, dry bulb. The temperature indicated by any temperature sensing element when held in air.

Temperature, Inlet. Temperature measured at the inlet stream of the heat exchanger.

Temperature, Outlet. Temperature measured at the outlet stream of the heat exchanger

rincipal


TKR College of Engineering & Technology (AUTONOMOUS) Medbowii, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

Annexure :3 HVAC

Introduction & back ground

Refrigeration Basics

- Refrigeration is the removal of heat from a material or space, so that it's temperature is lower than that of its surroundings.
- When refrigerant absorbs the unwanted heat, this raises the refrigerant's temperature ("Saturation Temperature") so that it changes from a liquid to a gas — it evaporates. The system then uses condensation to release the heat and change the refrigerant back into a liquid. This is called "Latent Heat".
- This cycle is based on the physical principle, that a liquid extracts heat from the surrounding area as it expands (boils) into a gas.
- To accomplish this, the refrigerant is pumped through a closed looped pipe system.
- The closed looped pipe system stops the refrigerant from becoming contaminated and controls its stream. The refrigerant will be both a vapor and a liquid in the loop.

Sri Gayatri Energy Services

Page 22

TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Annexure - 4 Lighting

	Range of	Levels as Per IS	Remarks
Type of Interior Activity	Service Illuminanac e in Lux	Quality Class of Direct Glare Limitation	
Educ	ation		/
Assembly Halls	200-300-500	3	
Teaching Spaces	200-300-500	1	
Lecture Theatres	()		
I) General	200-300-500	1	
ii) Demo Benches	300-500- 700	1	Localized Lighting may be appropriate
iii) Seminar Rooms	300-500-750	1	
iv) Art Rooms	300-500-750	1	
v) laboratories	300-500-750	1	
vi) Libraries	200-300-500	1	· · · · · · · · · · · · · · · · · · ·
vii)Music Rooms	200-300-500	1	
viii) Sports Hall	200-300-500	1	
ix) Work Shop	200-300-500	1	
x)Computer Work station	300-500-750	1	
xi)Bath Rooms	50-100-150		Supplementary local lighting near mirror
xii) Office Rooms	300-500-750	1	
xiii) Entrance Halls, Lobbies	150-200-300	2	
xiv) Corridors, Passageway, Stairs	50-100-150	2	

1

Principal TKR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services

	Light Source Compari	2011	
Attributes	Incandescent	CFL	LED
Colur Rendering Index	100	Greater than 80	40-80
Watts/ Lamp	100	23	1
Lumen/Lamp	1600	1600	30
Lumen/Watt	16	60-80	20-30
Life (Hrs)	750	8000	50,000

Colour Rendering Index

1500 K	Candlelight	
2680 K	40 W incandescent lamp	
3000 K	200 W incandescent lamp	
3200 K	Sunrise/sunset	
3400 K	Tungsten lamp	
3400 K	1 hour from dusk/dawn	
5000-4500 K	Xenon lamp/light arc	
5500 K	Sunny daylight around noon	
5500-5600 K	Electronic photo flash	
6500-7500 K	Overcast sky	
9000-12000 K	Blue sky	

Principal KR College of Engineering & Technology (AUTONOMOUS) Medbowli, Meerpet, Hyderabad-97.

Sri Gayatri Energy Services